The nucleotide-permeable Escherichia coli cell, a sensitive DNA repair indicator for carcinogens, mutagens, and antitumor agents binding covalently to DNA. 1978

H W Thielmann, and H Gersbach

Ether-permeabilized (nucleotide-permeable) Escherichia coli cells respond to alkylating and arylalkylating carcinogens with DNA excision repair, as assessed by their stimulation of DNA repair synthesis. In the present work, we have investigated whether DNA repair synthesis in ether-treated E. coli cells can serve as a general indicator to monitor the DNA-binding of carcinogens, mutagens and antitumor agents. Therefore, a standard assay was developed and comparative analyses were performed on 11 ultimate carcinogens, 10 proximate carcinogens, 2 tumor promoters, 6 mutagens, and 12 antitumor agents. All ultimate carcinogens (alkylating, acylating, arylalkylating agents) and mutagens (e.g., hydrogeen peroxide, acridine derivatives) caused DNA excision repair in wild type cells as measured by [3H] dTMP incorporation and simultaneously inhibited replicative DNA synthesis to various extents. Control experiments with the mutant cells uvrA and uvrB were performed to determine whether the pyrimidine-dimer-specific UV-endonuclease was involved in the removal of DNA damage. This was found to be true for the ultimate carcinogens (Ac)2 ONFln, mitomycin C, and for very reactive alkylating carcinogens. None of the ultimate carcinogens induced repair polymerization in mutant cells lacking the 5'-3' exonucleolytic activity of DNA polymerase I. Proximate carcinogens, such as Me2NNO, 4-nitroquinoline-1-oxide and aflatoxins, did not induce excision repair in the standard assay, probably because of the inability of E. coli to perform the activation steps necessary for covalent DNA-binding. However, Me2NNO, when pretreated with Udenfriend's hydroxylating mixture, gave rise to a low level of repair polymerization in ether-treated cells. Intercalating mutagens, such as quinacrine and ethidum bromide, inhibited replicative DNA synthesis. However, they were not found to be repair-inducers. THE TUMOR PROMOters TPA and phorbol-12,13-didecanoate did not cause excision repair, even when applied at high concentrations, nor did they inhibit repair synthesis stimulated by MeNOUr or (Ac)2 ONFln. The antitumor agents may be classified into two groups on the basis of the influence they exert on DNA synthesis: members of the first group (involving BCNU and bleomycin) stimulate repair polymerization and, in addition, inhibit DNA replication. These compounds are known to bind covalently to DNA. The second group of drugs (including adriamycin and cis-Pt(II)diammine complexes) inhibits DNA replication without stimulating repair synthesis. The predominant DNA-interaction of these compounds is known to be a non-covalent (i.e., intercalative, electrostatic) binding. Our experiments show that the ether-permeabilized E. coli cell can be successfully used to test ultimate carcinogens, mutagens and antitumor agents for repair-inducing and replication-inhibiting activity. The standard test might be extended to pre- and proximate carcinogens, provided these can be suitably activated.

UI MeSH Term Description Entries
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy

Related Publications

H W Thielmann, and H Gersbach
June 1981, Mutation research,
H W Thielmann, and H Gersbach
December 1978, Applied and environmental microbiology,
H W Thielmann, and H Gersbach
May 1974, Proceedings of the National Academy of Sciences of the United States of America,
H W Thielmann, and H Gersbach
January 1984, IARC scientific publications,
H W Thielmann, and H Gersbach
December 1975, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!