Respiratory tract toxicity of inhaled hydrogen sulfide in Fischer-344 rats, Sprague-Dawley rats, and B6C3F1 mice following subchronic (90-day) exposure. 2004

David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
CIIT Centers for Health Research, Research Triangle Park, NC 27709-2137, USA. dorman@ciit.org

The goal of this study was to characterize the toxicity of hydrogen sulfide (H2S), including nasal and pulmonary effects, in adult male and female Fischer-344 and Sprague-Dawley rats and B6C3F1 mice. Animals underwent whole-body exposure to 0, 10, 30, or 80 ppm H2S for 6 h/day for at least 90 days. Exposure to 80 ppm H2S was associated with reduced feed consumption during either the first exposure week (rats) or throughout the 90-day exposure (mice). Male Fischer-344 rats, female Sprague-Dawley rats, and female B6C3F1 mice exposed to 80 ppm H2S had depressed terminal body weights when compared with air-exposed controls. Subchronic H2S inhalation did not result in toxicologically relevant alterations in hematological indices, serum chemistries, or gross pathology. Histologic evaluation of the nose showed an exposure-related increased incidence of olfactory neuronal loss (ONL) and rhinitis. ONL occurred following exposure to > or =30 ppm H2S in both sexes of all experimental groups, with one exception, male Sprague-Dawley rats demonstrated ONL following exposure to 80 ppm H2S only. A 100% incidence of rhinitis was found in the male and female B6C3F1 mice exposed to 80 ppm H2S. In the lung, exposure to H2S was associated with bronchiolar epithelial hypertrophy and hyperplasia in male and female Sprague-Dawley rats following exposure to > or =30 ppm H2S and in male Fischer-344 rats exposed to 80 ppm H2S. Our results confirm that the rodent nose, and less so the lung, are highly sensitive to H2S-induced toxicity, with 10 ppm representing the NOAEL for ONL following subchronic inhalation.

UI MeSH Term Description Entries
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D012137 Respiratory System The tubular and cavernous organs and structures, by means of which pulmonary ventilation and gas exchange between ambient air and the blood are brought about. Respiratory Tract,Respiratory Systems,Respiratory Tracts,System, Respiratory,Tract, Respiratory
D001835 Body Weight The mass or quantity of heaviness of an individual. It is expressed by units of pounds or kilograms. Body Weights,Weight, Body,Weights, Body
D001980 Bronchi The larger air passages of the lungs arising from the terminal bifurcation of the TRACHEA. They include the largest two primary bronchi which branch out into secondary bronchi, and tertiary bronchi which extend into BRONCHIOLES and PULMONARY ALVEOLI. Primary Bronchi,Primary Bronchus,Secondary Bronchi,Secondary Bronchus,Tertiary Bronchi,Tertiary Bronchus,Bronchi, Primary,Bronchi, Secondary,Bronchi, Tertiary,Bronchus,Bronchus, Primary,Bronchus, Secondary,Bronchus, Tertiary
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females

Related Publications

David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
January 2010, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
December 1989, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
February 1996, Journal of toxicology and environmental health,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
January 1992, Fundamental and applied toxicology : official journal of the Society of Toxicology,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
January 2018, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
September 2011, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
October 1988, Fundamental and applied toxicology : official journal of the Society of Toxicology,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
January 1985, Drug and chemical toxicology,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
November 2023, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
David C Dorman, and Melanie F Struve, and Elizabeth A Gross, and Karrie A Brenneman
October 1987, Fundamental and applied toxicology : official journal of the Society of Toxicology,
Copied contents to your clipboard!