Liver sinusoidal endothelial cells are insufficient to activate T cells. 2004

Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
Hepatobiliary Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 1002, USA.

Liver sinusoidal endothelial cells (LSEC) have been reported to express MHC class II, CD80, CD86, and CD11c and effectively stimulate naive T cells. Because dendritic cells (DC) are known to possess these characteristics, we sought to directly compare the phenotype and function of murine LSEC and DC. Nonparenchymal cells from C57BL/6 mice were obtained by collagenase digestion of the liver followed by density gradient centrifugation. From the enriched nonparenchymal cell fraction, LSEC (CD45(-)) were then isolated to 99% purity using immunomagnetic beads. Flow cytometric analysis of LSEC demonstrated high expression of CD31, von Willebrand factor, and FcgammaRs. However, unlike DC, LSEC had low or absent expression of MHC class II, CD86, and CD11c. LSEC demonstrated a high capacity for Ag uptake in vitro and in vivo. Although acetylated low-density lipoprotein uptake has been purported to be a specific function of LSEC, we found DC captured acetylated low-density lipoprotein to a similar extent in vivo. Consistent with their phenotype, LSEC were poor stimulators of allogeneic T cells. Furthermore, in the absence of exogenous costimulation, LSEC induced negligible proliferation of CD4(+) or CD8(+) TCR-transgenic T cells. Thus, contrary to previous reports, our data indicate that LSEC alone are insufficient to activate naive T cells.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008297 Male Males
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D003713 Dendritic Cells Specialized cells of the hematopoietic system that have branch-like extensions. They are found throughout the lymphatic system, and in non-lymphoid tissues such as SKIN and the epithelia of the intestinal, respiratory, and reproductive tracts. They trap and process ANTIGENS, and present them to T-CELLS, thereby stimulating CELL-MEDIATED IMMUNITY. They are different from the non-hematopoietic FOLLICULAR DENDRITIC CELLS, which have a similar morphology and immune system function, but with respect to humoral immunity (ANTIBODY PRODUCTION). Dendritic Cells, Interdigitating,Interdigitating Cells,Plasmacytoid Dendritic Cells,Veiled Cells,Dendritic Cells, Interstitial,Dendritic Cells, Plasmacytoid,Interdigitating Dendritic Cells,Interstitial Dendritic Cells,Cell, Dendritic,Cell, Interdigitating,Cell, Interdigitating Dendritic,Cell, Interstitial Dendritic,Cell, Plasmacytoid Dendritic,Cell, Veiled,Cells, Dendritic,Cells, Interdigitating,Cells, Interdigitating Dendritic,Cells, Interstitial Dendritic,Cells, Plasmacytoid Dendritic,Cells, Veiled,Dendritic Cell,Dendritic Cell, Interdigitating,Dendritic Cell, Interstitial,Dendritic Cell, Plasmacytoid,Interdigitating Cell,Interdigitating Dendritic Cell,Interstitial Dendritic Cell,Plasmacytoid Dendritic Cell,Veiled Cell
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000949 Histocompatibility Antigens Class II Large, transmembrane, non-covalently linked glycoproteins (alpha and beta). Both chains can be polymorphic although there is more structural variation in the beta chains. The class II antigens in humans are called HLA-D ANTIGENS and are coded by a gene on chromosome 6. In mice, two genes named IA and IE on chromosome 17 code for the H-2 antigens. The antigens are found on B-lymphocytes, macrophages, epidermal cells, and sperm and are thought to mediate the competence of and cellular cooperation in the immune response. The term IA antigens used to refer only to the proteins encoded by the IA genes in the mouse, but is now used as a generic term for any class II histocompatibility antigen. Antigens, Immune Response,Class II Antigens,Class II Histocompatibility Antigen,Class II Major Histocompatibility Antigen,Ia Antigens,Ia-Like Antigen,Ia-Like Antigens,Immune Response Antigens,Immune-Associated Antigens,Immune-Response-Associated Antigens,MHC Class II Molecule,MHC II Peptide,Class II Antigen,Class II Histocompatibility Antigens,Class II MHC Proteins,Class II Major Histocompatibility Antigens,Class II Major Histocompatibility Molecules,I-A Antigen,I-A-Antigen,IA Antigen,MHC Class II Molecules,MHC II Peptides,MHC-II Molecules,Antigen, Class II,Antigen, I-A,Antigen, IA,Antigen, Ia-Like,Antigens, Class II,Antigens, Ia,Antigens, Ia-Like,Antigens, Immune-Associated,Antigens, Immune-Response-Associated,I A Antigen,II Peptide, MHC,Ia Like Antigen,Ia Like Antigens,Immune Associated Antigens,Immune Response Associated Antigens,MHC II Molecules,Molecules, MHC-II,Peptide, MHC II,Peptides, MHC II
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
September 2015, Comprehensive Physiology,
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
March 2021, Molecular biology reports,
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
July 2005, Journal of immunology (Baltimore, Md. : 1950),
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
September 2012, Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology,
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
May 2013, The Journal of clinical investigation,
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
August 2012, Seikagaku. The Journal of Japanese Biochemical Society,
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
February 2000, Human gene therapy,
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
January 2021, Frontiers in cell and developmental biology,
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
September 2006, Journal of immunology (Baltimore, Md. : 1950),
Steven C Katz, and Venu G Pillarisetty, and Joshua I Bleier, and Alaap B Shah, and Ronald P DeMatteo
February 2015, Gastroenterology,
Copied contents to your clipboard!