Modularity and integration in the hominoid scapula. 2004

Nathan Young
Harvard University, Department of Anthropology, Cambridge, Massachusetts 02138, USA. nyoung@fas.harvard.edu

In this paper, several hypotheses of morphological integration within the hominoid (ape) scapula are tested. In particular, whether the scapula represents a set of developmental tissues sharing tight correlations between constituent parts (i.e., highly integrated) or is more modularly organized (i.e., covariation is greater within regions than between) is tested. Whether the patterns of integration in the scapula have changed over phylogenetic time or in response to selective forces is also examined. Results from two different analyses (matrix correlations and edge deviance) indicate traits comprising the blade and acromion, and to a weaker degree the glenoid, correlate highly with each other. The coracoid exhibits more independence from other parts of the scapula, perhaps reflecting its distinct evolutionary developmental history. Overall, similarity in species-specific patterns of correlation was high between all taxa. Correlation matrix similarity was significantly correlated with functional similarity and morphological distance, but not with phylogenetic distance. These results are congruent with other studies of integration that suggest correlation patterns remain stable over evolutionary time. There are changes associated with phylogeny, but the tight link between functional similarity and phylogenetic distance at this level of comparison presents possible challenges to interpretation. Overall similarities in the pattern of integration in all taxa might be better interpreted as relative strengthening or weakening of trait correlations rather than broadscale changes in the pattern of relationship between developmental regions. Larger sample sizes with greater taxonomic/functional breadth, and finer scale analyses of patterns of correlation are needed to test these hypotheses further.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D001837 Body Weights and Measures Measurements of the height, weight, length, area, etc., of the human and animal body or its parts. Body Measures,Body Measure,Measure, Body,Measures, Body
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000882 Haplorhini A suborder of PRIMATES consisting of six families: CEBIDAE (some New World monkeys), ATELIDAE (some New World monkeys), CERCOPITHECIDAE (Old World monkeys), HYLOBATIDAE (gibbons and siamangs), CALLITRICHINAE (marmosets and tamarins), and HOMINIDAE (humans and great apes). Anthropoidea,Monkeys,Anthropoids,Monkey
D001699 Biometry The use of statistical and mathematical methods to analyze biological observations and phenomena. Biometric Analysis,Biometrics,Analyses, Biometric,Analysis, Biometric,Biometric Analyses
D012540 Scapula Also called the shoulder blade, it is a flat triangular bone, a pair of which form the back part of the shoulder girdle. Scapulae,Shoulder Blade,Shoulder Blades
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings

Related Publications

Nathan Young
April 2008, Evolution; international journal of organic evolution,
Nathan Young
October 2022, Journal of human evolution,
Nathan Young
February 2005, Journal of human evolution,
Nathan Young
October 2013, American journal of physical anthropology,
Nathan Young
April 2017, American journal of physical anthropology,
Nathan Young
March 2019, Scientific reports,
Nathan Young
August 2019, Integrative and comparative biology,
Nathan Young
February 1977, Journal of dental research,
Copied contents to your clipboard!