Specificity of nucleotide binding sites in isolated chloroplast coupling factor (CF1). 1978

M Banai, and N Shavit, and D M Chipman

The binding of various nucleotides to chloroplast coupling factor CF1 was studied by two dialysis techniques. It was found that the number of nucleoside diphosphate sites and their specificities for the base moiety is dependent on the magnesium concentration. In the presence of 50 micrometer added MgCl2, the protein has a single strong site/mol protein with Kd = 0.5 micrometer for ADP and high specificity (Kd greater than 20 micrometer for epsilonADP, GDP, CDP). In the presence of 5 mM MgCl2, the protein has two independent tight ADP sites (Kd = 0.4 micrometer) of low specificity (Kd approximately 0.8, 2, and 2 micrometer, respectively for episilonADP, GDP, and CDP). These results are compared with the specificity of the partial reactions for photophosphorylation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012265 Ribonucleotides Nucleotides in which the purine or pyrimidine base is combined with ribose. (Dorland, 28th ed) Ribonucleoside Phosphates,Ribonucleotide,Phosphates, Ribonucleoside

Related Publications

M Banai, and N Shavit, and D M Chipman
October 1978, Biochimica et biophysica acta,
M Banai, and N Shavit, and D M Chipman
November 2002, Biochemistry. Biokhimiia,
M Banai, and N Shavit, and D M Chipman
December 1998, European journal of biochemistry,
M Banai, and N Shavit, and D M Chipman
March 1991, The Journal of biological chemistry,
M Banai, and N Shavit, and D M Chipman
July 1975, Biochemistry,
M Banai, and N Shavit, and D M Chipman
February 1982, Biochemistry,
M Banai, and N Shavit, and D M Chipman
October 1981, Biochemistry,
Copied contents to your clipboard!