Morphological variation of individual Escherichia coli 30S ribosomal subunits in vitro and in situ, as revealed by cryo-electron tomography. 2004

Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
Department of Microbiology, Stockholm University, S-106 91 Stockholm, Sweden.

Cryo-electron tomography has been used to reconstruct the structures of individual ribosomal 30S subunits in Escherichia coli cells treated with rifampicin. Rifampicin inhibits transcription initiation, thus giving depletion of mRNA and accumulation of free 30S and 50S subunits in the cell. Here, we present the 3D morphologies of reconstructed individual 30S ribosomal subunits both in vitro and in situ from E. coli. The head, the platform, and the body of the structures show large conformational movements relative to each other. The particles were grouped into three conformational groups according to the ratio between width and height in the subunit solvent side view. Also, an S15 fusion protein derivative has been used as a physical reporter to localize S15 in the 30S subunit. The results demonstrate a considerable morphological heterogeneity and structural variability among 30S ribosomal subunits.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D012269 Ribosomal Proteins Proteins found in ribosomes. They are believed to have a catalytic function in reconstituting biologically active ribosomal subunits. Proteins, Ribosomal,Ribosomal Protein,Protein, Ribosomal
D012270 Ribosomes Multicomponent ribonucleoprotein structures found in the CYTOPLASM of all cells, and in MITOCHONDRIA, and PLASTIDS. They function in PROTEIN BIOSYNTHESIS via GENETIC TRANSLATION. Ribosome
D012293 Rifampin A semisynthetic antibiotic produced from Streptomyces mediterranei. It has a broad antibacterial spectrum, including activity against several forms of Mycobacterium. In susceptible organisms it inhibits DNA-dependent RNA polymerase activity by forming a stable complex with the enzyme. It thus suppresses the initiation of RNA synthesis. Rifampin is bactericidal, and acts on both intracellular and extracellular organisms. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1160) Rifampicin,Benemycin,Rifadin,Rimactan,Rimactane,Tubocin
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA

Related Publications

Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
December 2020, RNA (New York, N.Y.),
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
November 1976, Biochemistry,
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
November 1974, Journal of virology,
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
January 1976, Nucleic acids research,
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
August 1972, Journal of biochemistry,
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
March 1971, Biochemical and biophysical research communications,
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
November 1971, European journal of biochemistry,
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
April 1969, Journal of bacteriology,
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
January 1981, Molecular & general genetics : MGG,
Qing Zhao, and Lars-Göran Ofverstedt, and Ulf Skoglund, and Leif A Isaksson
August 1973, Biochemistry,
Copied contents to your clipboard!