Determination of liquid-liquid partition coefficients by separation methods. 2004

A Berthod, and S Carda-Broch
Laboratoire des Sciences Analytiques, CNRS, Université de Lyon 1, Bat CPE-308, 43 Boulevard du 11 November 1918, 69622 Villeurbanne Cedex, France. alain.berthod@univ-lyon1.fr

By essence, all kinds of chromatographic methods use the partitioning of solutes between a stationary and a mobile phase to separate them. Not surprisingly, separation methods are useful to determine accurately the liquid-liquid distribution constants, commonly called partition coefficient. After briefly recalling the thermodynamics of the partitioning of solutes between two liquid phases, the review lists the different methods of measurement in which chromatography is involved. The shake-flask method is described. The ease of the HPLC method is pointed out with its drawback: the correlation is very sensitive to congeneric effect. Microemulsion electrokinetic capillary electrophoresis has become a fast and reliable method commonly used in industry. Counter-current chromatography (CCC) is a liquid chromatography method that uses a liquid stationary phase. Since the CCC solute retention volumes are only depending on their partition coefficients, it is the method of choice for partition coefficient determination with any liquid system. It is shown that Ko/w, the octanol-water partition coefficients, are obtained by CCC within the -1 < log Ko/w < 4 range, without any correlation or standardization using octanol as the stationary phase. Examples of applications of the knowledge of liquid-liquid partition coefficient in the vast world of solvent extraction and hydrophobicity estimation are presented.

UI MeSH Term Description Entries
D002627 Chemistry, Physical The study of CHEMICAL PHENOMENA and processes in terms of the underlying PHYSICAL PHENOMENA and processes. Physical Chemistry,Chemistries, Physical,Physical Chemistries
D002845 Chromatography Techniques used to separate mixtures of substances based on differences in the relative affinities of the substances for mobile and stationary phases. A mobile phase (fluid or gas) passes through a column containing a stationary phase of porous solid or liquid coated on a solid support. Usage is both analytical for small amounts and preparative for bulk amounts. Chromatographies
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D003377 Countercurrent Distribution A method of separation of two or more substances by repeated distribution between two immiscible liquid phases that move past each other in opposite directions. It is a form of liquid-liquid chromatography. (Stedman, 25th ed) Chromatography, Countercurrent,Countercurrent Chromatography,Distribution, Countercurrent
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D055598 Chemical Phenomena The composition, structure, conformation, and properties of atoms and molecules, and their reaction and interaction processes. Chemical Concepts,Chemical Processes,Physical Chemistry Concepts,Physical Chemistry Processes,Physicochemical Concepts,Physicochemical Phenomena,Physicochemical Processes,Chemical Phenomenon,Chemical Process,Physical Chemistry Phenomena,Physical Chemistry Process,Physicochemical Phenomenon,Physicochemical Process,Chemical Concept,Chemistry Process, Physical,Chemistry Processes, Physical,Concept, Chemical,Concept, Physical Chemistry,Concept, Physicochemical,Concepts, Chemical,Concepts, Physical Chemistry,Concepts, Physicochemical,Phenomena, Chemical,Phenomena, Physical Chemistry,Phenomena, Physicochemical,Phenomenon, Chemical,Phenomenon, Physicochemical,Physical Chemistry Concept,Physicochemical Concept,Process, Chemical,Process, Physical Chemistry,Process, Physicochemical,Processes, Chemical,Processes, Physical Chemistry,Processes, Physicochemical
D019075 Electrophoresis, Capillary A highly-sensitive (in the picomolar range, which is 10,000-fold more sensitive than conventional electrophoresis) and efficient technique that allows separation of PROTEINS; NUCLEIC ACIDS; and CARBOHYDRATES. (Segen, Dictionary of Modern Medicine, 1992) Capillary Zone Electrophoresis,Capillary Electrophoreses,Capillary Electrophoresis,Capillary Zone Electrophoreses,Electrophoreses, Capillary,Electrophoreses, Capillary Zone,Electrophoresis, Capillary Zone,Zone Electrophoreses, Capillary,Zone Electrophoresis, Capillary

Related Publications

A Berthod, and S Carda-Broch
May 2004, Journal of chromatography. A,
A Berthod, and S Carda-Broch
November 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences,
A Berthod, and S Carda-Broch
December 1984, Journal of pharmaceutical sciences,
A Berthod, and S Carda-Broch
January 1986, Methods in enzymology,
A Berthod, and S Carda-Broch
November 2012, Journal of chromatography. A,
A Berthod, and S Carda-Broch
April 1995, Journal of pharmaceutical and biomedical analysis,
A Berthod, and S Carda-Broch
June 1975, Journal of medicinal chemistry,
A Berthod, and S Carda-Broch
January 1969, Acta chemica Scandinavica,
A Berthod, and S Carda-Broch
July 2001, Journal of chromatography. A,
Copied contents to your clipboard!