Conversion, by limited proteolysis, of an archaebacterial citrate synthase into essentially a citryl-CoA hydrolase. 1992

U Lill, and S Lefrank, and A Henschen, and H Eggerer
Institut für Physiologische Chemie, Technischen Universität München, Federal Republic of Germany.

1. Limited proteolysis of citrate synthase from Sulfolobus solfataricus by trypsin reduced the rate of the overall reaction (acetyl-CoA + oxaloacetate + H2O----citrate + CoASH) to 4% but did not affect the hydrolysis of citryl-CoA. Experimental results indicate that a connecting link between the enzyme's ligase and hydrolase activity becomes impaired specifically on treatment with trypsin. Other proteolytic enzymes like chymotrypsin and subtilisin inactivated catalytic functions of citrate synthase, ligase and hydrolase, equally well. 2. Tryptic hydrolysis occurs at the N-terminal region of citrate synthase, but a study by SDS/PAGE revealed no difference in molecular mass between native and proteolytically nicked citrate synthase. The peptide removed from the enzyme by trypsin, therefore, contains less than about 15 amino acid residues. 3. The Km values of the substrates for both native and nicked enzyme were identical, as was the state of aggregation (dimeric) of the two enzyme species. These could be separated by affinity chromatography on Blue-Sepharose and differentiated by their isoelectric points (pI = 6.68 +/- 0.08 and pI = 6.37 +/- 0.03 for native citrate synthase and the large tryptic peptide, respectively) as well as by the N-terminus which is blocked in the native enzyme only. 4. Edman degradation of the large tryptic fragment yielded the N-terminal sequence GLEDVYIKSTSLTYIDGVNGVLRY, which is 71% identical to the N-terminal region (positions 9-32) of citrate synthase from Thermoplasma acidophilum. 5. The conversion of citrate synthase into essentially a citryl-CoA hydrolase is considered the consequence of a conformational change thought to occur on tryptic removal of the N-terminal small peptide.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010450 Endopeptidases A subclass of PEPTIDE HYDROLASES that catalyze the internal cleavage of PEPTIDES or PROTEINS. Endopeptidase,Peptide Peptidohydrolases
D002918 Chymotrypsin A serine endopeptidase secreted by the pancreas as its zymogen, CHYMOTRYPSINOGEN and carried in the pancreatic juice to the duodenum where it is activated by TRYPSIN. It selectively cleaves aromatic amino acids on the carboxyl side. Alpha-Chymotrypsin Choay,Alphacutanée,Avazyme
D002950 Citrate (si)-Synthase Enzyme that catalyzes the first step of the tricarboxylic acid cycle (CITRIC ACID CYCLE). It catalyzes the reaction of oxaloacetate and acetyl CoA to form citrate and coenzyme A. This enzyme was formerly listed as EC 4.1.3.7. Citrate Synthase,Synthase, Citrate
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D000214 Acyl Coenzyme A S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation. Acyl CoA,Fatty Acyl CoA,Long-Chain Acyl CoA,Acyl CoA, Fatty,Acyl CoA, Long-Chain,CoA, Acyl,CoA, Fatty Acyl,CoA, Long-Chain Acyl,Coenzyme A, Acyl,Long Chain Acyl CoA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

U Lill, and S Lefrank, and A Henschen, and H Eggerer
June 1989, European journal of biochemistry,
U Lill, and S Lefrank, and A Henschen, and H Eggerer
December 1991, The Biochemical journal,
U Lill, and S Lefrank, and A Henschen, and H Eggerer
July 1963, Biochimica et biophysica acta,
U Lill, and S Lefrank, and A Henschen, and H Eggerer
May 2014, The journal of physical chemistry. B,
U Lill, and S Lefrank, and A Henschen, and H Eggerer
August 1984, European journal of biochemistry,
U Lill, and S Lefrank, and A Henschen, and H Eggerer
August 1980, Biochemistry,
U Lill, and S Lefrank, and A Henschen, and H Eggerer
August 1985, FEBS letters,
U Lill, and S Lefrank, and A Henschen, and H Eggerer
January 1983, FEBS letters,
U Lill, and S Lefrank, and A Henschen, and H Eggerer
February 1988, Biological chemistry Hoppe-Seyler,
Copied contents to your clipboard!