Matrix NADH dehydrogenases of plant mitochondria and sites of quinone reduction by complex I. 1992

R I Menz, and M Griffith, and D A Day, and J T Wiskich
Botany Department, University of Adelaide, Australia.

In order to distinguish the pathways involved in the oxidation of matrix NADH in plant mitochondria, the oxidation of NADH and nicotinamide hypoxanthine dinucleotide (reduced form) was investigated in submitochondrial particles prepared from beetroot (Beta vulgaris L. cv. Derwent Globe) and soybeans (Glycine max L. cv. Bragg). Nicotinamide-hypoxanthine-dinucleotide(reduced form)-oxidase activity was more strongly inhibited by rotenone than the NADH-oxidase activity but both of the rotenone-inhibited activities could be stimulated by adding ubiquinone-1. The corresponding ubiquinone-1-reductase activities were inhibited by rotenone (to 69%) and further inhibited by N,N'-dicyclohexylcarbodiimide (to 79%), whilst the K3Fe(CN)6-reductase activities were not sensitive to either rotenone or N,N'-dicyclohexylcarbodiimide. Immunological analysis of mitochondrial proteins using an antiserum raised against purified beetroot complex I indicated very few differences between soybean and fresh and aged beetroot mitochondria, despite their varying sensitivities to rotenone. We confirm that there are two dehydrogenases capable of oxidising internal NADH and that only one of these, namely complex I, is inhibited by rotenone. Further, we conclude that complex I has two potential sites of quinone reduction, both sensitive to N,N'-dicyclohexycarbodiimide inhibition but only one of which is sensitive to rotenone inhibition.

UI MeSH Term Description Entries
D009243 NAD A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed) Coenzyme I,DPN,Diphosphopyridine Nucleotide,Nadide,Nicotinamide-Adenine Dinucleotide,Dihydronicotinamide Adenine Dinucleotide,NADH,Adenine Dinucleotide, Dihydronicotinamide,Dinucleotide, Dihydronicotinamide Adenine,Dinucleotide, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide,Nucleotide, Diphosphopyridine
D009245 NADH Dehydrogenase A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1. NADH Cytochrome c Reductase,Diaphorase (NADH Dehydrogenase),NADH (Acceptor) Oxidoreductase,NADH Cytochrome c Oxidoreductase,Dehydrogenase, NADH
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D004024 Dicyclohexylcarbodiimide A carbodiimide that is used as a chemical intermediate and coupling agent in peptide synthesis. (From Hawley's Condensed Chemical Dictionary, 12th ed) DCCD
D012402 Rotenone A botanical insecticide that is an inhibitor of mitochondrial electron transport.
D013025 Glycine max An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS. Soy Beans,Soybeans,Bean, Soy,Beans, Soy,Soy Bean,Soybean
D013367 Submitochondrial Particles The various filaments, granules, tubules or other inclusions within mitochondria. Particle, Submitochondrial,Particles, Submitochondrial,Submitochondrial Particle
D014451 Ubiquinone A lipid-soluble benzoquinone which is involved in ELECTRON TRANSPORT in mitochondrial preparations. The compound occurs in the majority of aerobic organisms, from bacteria to higher plants and animals. Coenzyme Q
D016227 Benzoquinones Benzene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups. 1,2-Benzoquinones,1,4-Benzoquinones,Benzodiones,2,5-Cyclohexadiene-1,4-Diones,o-Benzoquinones,p-Benzoquinones

Related Publications

R I Menz, and M Griffith, and D A Day, and J T Wiskich
January 1970, Biochemical and biophysical research communications,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
January 1973, Biochimica et biophysica acta,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
August 1995, Journal of bioenergetics and biomembranes,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
December 2010, Biochimica et biophysica acta,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
October 2002, Molecular aspects of medicine,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
July 1999, FEBS letters,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
October 1989, The Journal of biological chemistry,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
August 1998, Proceedings of the National Academy of Sciences of the United States of America,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
August 1993, Journal of bioenergetics and biomembranes,
R I Menz, and M Griffith, and D A Day, and J T Wiskich
October 2018, Biological chemistry,
Copied contents to your clipboard!