Influence of mass of ruminal contents on voluntary intake and digesta passage in steers fed a forage and a concentrate diet. 2004

M S Whetsell, and E C Prigge, and E L Nestor
Division of Animal and Veterinary Sciences, West Virginia University, Morgantown 26505-6108, USA. marcela.whetsell@mail.wvu.edu

To evaluate the influence of mass of ruminal contents on voluntary intake and ruminal function, five ruminally cannulated steers (550 kg) were fed an orchard grass hay diet ad libitum in a 5 x 5 Latin square experiment. The mass of ruminal contents was altered by adding varying weights of modified tennis balls to the rumen before the initiation of each 15-d experimental period. Treatments consisted of 50 balls with a specific gravity of 1.0, 1.1, 1.2, 1.3, or 1.4; the total weight of the balls was 7.45, 8.50, 9.25, 10.55, and 11.55 kg, respectively. Increasing the specific gravity of the balls added to the rumen decreased DMI and particle passage rate (P < 0.05) in a linear manner. A second experiment was conducted to evaluate the influence of mass of ruminal contents on voluntary intake and ruminal function of both forage and concentrate diets. Five ruminally cannulated steers (580 kg) were fed a 70% concentrate (DM basis) or an orchardgrass hay diet ad libitum in a 5 x 5 Latin square experiment. The mass of ruminal contents was altered as in the first experiment. Treatments consisted of 0 balls added to the rumen of steers fed concentrate diet (control), 75 balls with a specific gravity of 1.1 given to steers fed a concentrate diet, 75 balls with a specific gravity of 1.4 given to steers fed a concentrate diet, 75 balls with a specific gravity of 1.1 given to steers fed a hay diet, and 75 balls with a specific gravity of 1.4 given to steers fed hay diet. The addition of balls to the rumen of steers fed the concentrate diet decreased DMI (P < 0.05) compared with the 0-ball treatment, and increasing specific gravity of balls also decreased DMI (P < 0.01) for both concentrate and hay diets. Adding balls to the rumen of steers fed the concentrate diet decreased particle passage rate (P < 0.05), whereas increasing specific gravity of balls decreased particle passage rate for both concentrate and hay diet. The results of this study suggest that the density of ruminal digesta can have an influence on voluntary intake of both forage and concentrate diets.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D002149 Energy Intake Total number of calories taken in daily whether ingested or by parenteral routes. Caloric Intake,Calorie Intake,Intake, Calorie,Intake, Energy
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004063 Digestion The process of breakdown of food for metabolism and use by the body.
D004435 Eating The consumption of edible substances. Dietary Intake,Feed Intake,Food Intake,Macronutrient Intake,Micronutrient Intake,Nutrient Intake,Nutritional Intake,Ingestion,Dietary Intakes,Feed Intakes,Intake, Dietary,Intake, Feed,Intake, Food,Intake, Macronutrient,Intake, Micronutrient,Intake, Nutrient,Intake, Nutritional,Macronutrient Intakes,Micronutrient Intakes,Nutrient Intakes,Nutritional Intakes
D005769 Gastrointestinal Motility The motor activity of the GASTROINTESTINAL TRACT. Intestinal Motility,Gastrointestinal Motilities,Intestinal Motilities,Motilities, Gastrointestinal,Motilities, Intestinal,Motility, Gastrointestinal,Motility, Intestinal
D005772 Gastrointestinal Transit Passage of food (sometimes in the form of a test meal) through the gastrointestinal tract as measured in minutes or hours. The rate of passage through the intestine is an indicator of small bowel function. GI Transit,GI Transits,Gastrointestinal Transits,Transit, GI,Transit, Gastrointestinal,Transits, GI,Transits, Gastrointestinal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M S Whetsell, and E C Prigge, and E L Nestor
July 1999, Journal of animal science,
M S Whetsell, and E C Prigge, and E L Nestor
December 1990, Journal of animal science,
M S Whetsell, and E C Prigge, and E L Nestor
October 1995, Journal of animal science,
M S Whetsell, and E C Prigge, and E L Nestor
February 1983, Journal of animal science,
Copied contents to your clipboard!