Chromosomes of tuatara, Sphenodon, a chromosome heteromorphism and an archaic reptilian karyotype. 2004

T B Norris, and G K Rickards, and C H Daugherty
School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand. Bruce.Norris@vuw.ac.nz

We examined karyotypes of the endemic New Zealand reptile genus Sphenodon (tuatara) from five populations, finding a karyotype unchanged for at least one million years. Animals karyotyped were from five geographically distinct populations, representing three groups, namely S. guntheri, S. punctatus (Cook Strait group), and S. punctatus (northeastern North Island group). All five populations have a diploid chromosome number of 2n = 36, consisting of 14 pairs of macrochromosomes and four pairs of microchromosomes. Chromosomal differences were not found between the five populations nor between female and male animals, except for one animal with a structural heteromorphism. Similarity between Sphenodon and Testudine karyotypes suggests an ancestral karyotype with a macrochromosome complement of 14 pairs and the ability to accumulate variable numbers of microchromosome pairs. Our research supports molecular phylogenies of the Reptilia.

UI MeSH Term Description Entries
D007621 Karyotyping Mapping of the KARYOTYPE of a cell. Karyotype Analysis Methods,Analysis Method, Karyotype,Analysis Methods, Karyotype,Karyotype Analysis Method,Karyotypings,Method, Karyotype Analysis,Methods, Karyotype Analysis
D008116 Lizards Reptiles within the order Squamata that generally possess limbs, moveable EYELIDS, and EXTERNAL EAR openings, although there are some species which lack one or more of these structures. Chameleons,Geckos,Chameleon,Gecko,Lizard
D008297 Male Males
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002875 Chromosomes In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Chromosome
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic

Related Publications

T B Norris, and G K Rickards, and C H Daugherty
June 1969, The Australian journal of experimental biology and medical science,
T B Norris, and G K Rickards, and C H Daugherty
October 2002, New Zealand veterinary journal,
T B Norris, and G K Rickards, and C H Daugherty
March 2021, Journal of structural biology,
T B Norris, and G K Rickards, and C H Daugherty
June 1995, Virology,
T B Norris, and G K Rickards, and C H Daugherty
September 1968, Journal of anatomy,
T B Norris, and G K Rickards, and C H Daugherty
January 2009, Cytogenetic and genome research,
T B Norris, and G K Rickards, and C H Daugherty
January 2014, PloS one,
T B Norris, and G K Rickards, and C H Daugherty
December 2005, Immunogenetics,
Copied contents to your clipboard!