Genetic determinants of low high-density lipoprotein cholesterol. 2004

Michael Miller, and Min Zhan
Department of Medicine, University of Maryland Hospital and Veterans Affairs Medical Center, Baltimore, Maryland, USA. mmiller@heart.umaryland.edu

OBJECTIVE High-density lipoprotein cholesterol (HDL-C) has been well established as an inverse predictor of coronary heart disease (CHD), and in recent years, investigations have focused on the genetic regulation of high-density lipoprotein. Although numerous candidate genes contribute to the low HDL-C phenotype, their impact on CHD is heterogeneous, reflecting diverse gene-gene interactions and gene-environmental relationships. This review summarizes recent data involving HDL regulatory genes and their role in atherothrombosis. RESULTS The primary genetic determinants associated with relative HDL-C deficiency states are the ATP binding cassette protein, ABCA1; apolipoprotein (APO) A1; and lecithin cholesteryl acyl transferase. Other potentially important candidates invoked in low HDL-C syndromes in humans include APOC3, lipoprotein lipase, sphingomyelin phosphodiesterase 1, and glucocerebrosidase. Molecular variation in ABCAI and APOAI and, in selected cases, lecithin cholesteryl acyl transferase deficiency have been associated with increased CHD, whereas two notable variants, APOAIMilano and APOAIParis, are associated with reduced risk. CONCLUSIONS Low HDL-C syndromes have generally been correlated with an increased risk of CHD. However, single-gene abnormalities responsible for HDL-C deficiency states may have variable effects on atherothrombotic risk.

UI MeSH Term Description Entries
D007862 Phosphatidylcholine-Sterol O-Acyltransferase An enzyme secreted from the liver into the plasma of many mammalian species. It catalyzes the esterification of the hydroxyl group of lipoprotein cholesterol by the transfer of a fatty acid from the C-2 position of lecithin. In familial lecithin:cholesterol acyltransferase deficiency disease, the absence of the enzyme results in an excess of unesterified cholesterol in plasma. Lecithin Cholesterol Acyltransferase,Cholesterol Ester Lysolecithin Acyltransferase,Lecithin Acyltransferase,Phosophatidylcholine-Sterol Acyltransferase,Acyltransferase, Lecithin,Acyltransferase, Lecithin Cholesterol,Acyltransferase, Phosophatidylcholine-Sterol,Cholesterol Acyltransferase, Lecithin,O-Acyltransferase, Phosphatidylcholine-Sterol,Phosophatidylcholine Sterol Acyltransferase,Phosphatidylcholine Sterol O Acyltransferase
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D003327 Coronary Disease An imbalance between myocardial functional requirements and the capacity of the CORONARY VESSELS to supply sufficient blood flow. It is a form of MYOCARDIAL ISCHEMIA (insufficient blood supply to the heart muscle) caused by a decreased capacity of the coronary vessels. Coronary Heart Disease,Coronary Diseases,Coronary Heart Diseases,Disease, Coronary,Disease, Coronary Heart,Diseases, Coronary,Diseases, Coronary Heart,Heart Disease, Coronary,Heart Diseases, Coronary
D005962 Glucosylceramidase A glycosidase that hydrolyzes a glucosylceramide to yield free ceramide plus glucose. Deficiency of this enzyme leads to abnormally high concentrations of glucosylceramide in the brain in GAUCHER DISEASE. EC 3.2.1.45. Glucocerebrosidase,Acid beta-Glucosidase,Glucocerebroside beta-Glucosidase,Glucosyl Ceramidase,Glucosylceramide beta-Glucosidase,Glucosylsphingosine Glucosyl Hydrolase,beta-Glucocerebrosidase,Acid beta Glucosidase,Ceramidase, Glucosyl,Glucocerebroside beta Glucosidase,Glucosyl Hydrolase, Glucosylsphingosine,Glucosylceramide beta Glucosidase,Hydrolase, Glucosylsphingosine Glucosyl,beta Glucocerebrosidase,beta-Glucosidase, Acid,beta-Glucosidase, Glucocerebroside,beta-Glucosidase, Glucosylceramide
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001056 Apolipoproteins C A group of apolipoproteins that can readily exchange among the various classes of lipoproteins (HDL; VLDL; CHYLOMICRONS). After lipolysis of TRIGLYCERIDES on VLDL and chylomicrons, Apo-C proteins are normally transferred to HDL. The subtypes can modulate remnant binding to receptors, LECITHIN CHOLESTEROL ACYLTRANSFERASE, or LIPOPROTEIN LIPASE. Apo-C,Apo C,ApoC,Apoprotein (C),Apoproteins C
D013108 Sphingomyelin Phosphodiesterase An enzyme that catalyzes the hydrolysis of sphingomyelin to ceramide (N-acylsphingosine) plus choline phosphate. A defect in this enzyme leads to NIEMANN-PICK DISEASE. EC 3.1.4.12. Sphingomyelin Cholinephosphohydrolase,Sphingomyelin Cleaving Enzyme,Sphingomyelinase,Sphingomyelinase C
D013631 Tangier Disease An autosomal recessively inherited disorder caused by mutation of ATP-BINDING CASSETTE TRANSPORTERS involved in cellular cholesterol removal (reverse-cholesterol transport). It is characterized by near absence of ALPHA-LIPOPROTEINS (high-density lipoproteins) in blood. The massive tissue deposition of cholesterol esters results in HEPATOMEGALY; SPLENOMEGALY; RETINITIS PIGMENTOSA; large orange tonsils; and often sensory POLYNEUROPATHY. The disorder was first found among inhabitants of Tangier Island in the Chesapeake Bay, MD. A-alphalipoprotein Neuropathy,Analphalipoproteinemia,Tangier Disease Neuropathy,Alpha High Density Lipoprotein Deficiency Disease,Cholesterol Thesaurismosis,HDLDT1,High Density Lipoprotein Deficiency, Tangier Type,High Density Lipoprotein Deficiency, Type 1,High-Density Lipoprotein Deficiency, Tangier Type,High-Density Lipoprotein Deficiency, Type I,Neuropathy of Tangier Disease,Tangier Hereditary Neuropathy,A-alphalipoprotein Neuropathies,Analphalipoproteinemias,Cholesterol Thesaurismoses,High Density Lipoprotein Deficiency, Type I,Neuropathies, A-alphalipoprotein,Neuropathy, A-alphalipoprotein,Thesaurismoses, Cholesterol,Thesaurismosis, Cholesterol

Related Publications

Michael Miller, and Min Zhan
February 1987, American heart journal,
Michael Miller, and Min Zhan
January 1997, The Annals of pharmacotherapy,
Michael Miller, and Min Zhan
January 2008, Journal of the American College of Cardiology,
Michael Miller, and Min Zhan
June 1997, Current opinion in lipidology,
Michael Miller, and Min Zhan
January 1995, Journal of cardiovascular pharmacology,
Michael Miller, and Min Zhan
November 2017, Journal of lipid research,
Michael Miller, and Min Zhan
February 1996, The Indian journal of medical research,
Copied contents to your clipboard!