Increased serum and testicular androgen levels in F1 rats with lifetime exposure to soy isoflavones. 2004

Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
Reproductive Biology Unit, Departments of Cellular and Molecular Medicine and Obstetrics and Gynecology, University of Ottawa, Ottawa, ON, Canada.

The consequences of dietary soy isoflavones on serum and testicular androgen levels were examined in F1 male rats from a multigeneration study investigating the effects of diets varying in isoflavone content. Rats were fed either a soy-free casein based diet (AIN93G) or a diet in which alcohol-washed soy protein replaced casein as the protein source and to which increasing amounts of Novasoy, a commercially available isoflavone supplement were added. Analysis of these diets showed that the isoflavone content in each diet was 0 (diet 1; casein based control), 31.7 (diet 2; alcohol-washed soy-based diet control), 36.1 (diet 3), 74.5 (diet 4), 235.6 (diet 5) and 1046.6 (diet 6) mg total isoflavones/kg pelleted diet. The levels of isoflavones in diet 1 would represent a daily intake level of 0 mg isoflavones, diets 2 and 3 estimate a low soy-containing human diet (e.g. North American), diet 4 would correspond to Asian diets (e.g. Japanese) or adult humans taking isoflavone supplements, diet 5 approximates the isoflavone intake by babies fed soy based infant formula and diet 6 approximates fivefold the intake levels by babies or 10-fold the intake levels of adults consuming high isoflavone containing diets. Serum testosterone (T) from F1 male rats sacrificed on postnatal days (PND) 28, 70, 120, 240 and 360 were low at PND 28 (0.4 ng/ml), increased approximately five to sixfold at PND 70 (2.5-3.0 ng/ml) and thereafter declined to a steady state level of approximately 1 ng/ml by PND 120. However, rats on diets 5 and 6 demonstrated altered serum testosterone profiles such that at days 120, testosterone levels remained significantly elevated at approximately 3 ng/ml (P < 0.05). Serum dihydrotestosterone levels exhibited similar profiles and the levels in PND 120 rats on diet 5 or 6 were also significantly elevated (two to threefold, P < 0.05). The intra-testicular testosterone concentration in rats on diet 5 was also elevated at PND 120 compared with diet 1 (P < 0.05). These findings show that F1 male rats continuously exposed to a mixture of dietary soy isoflavones from conception onwards exhibit altered serum and testicular androgen profiles.

UI MeSH Term Description Entries
D007529 Isoflavones 3-Phenylchromones. Isomeric form of FLAVONOIDS in which the benzene group is attached to the 3 position of the benzopyran ring instead of the 2 position. 3-Benzylchroman-4-One,3-Benzylidene-4-Chromanone,Homoisoflavone,Homoisoflavones,Isoflavone,Isoflavone Derivative,3-Benzylchroman-4-Ones,3-Benzylidene-4-Chromanones,Isoflavone Derivatives,3 Benzylchroman 4 One,3 Benzylchroman 4 Ones,3 Benzylidene 4 Chromanone,3 Benzylidene 4 Chromanones,Derivative, Isoflavone,Derivatives, Isoflavone
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D000728 Androgens Compounds that interact with ANDROGEN RECEPTORS in target tissues to bring about the effects similar to those of TESTOSTERONE. Depending on the target tissues, androgenic effects can be on SEX DIFFERENTIATION; male reproductive organs, SPERMATOGENESIS; secondary male SEX CHARACTERISTICS; LIBIDO; development of muscle mass, strength, and power. Androgen,Androgen Receptor Agonist,Androgen Effect,Androgen Effects,Androgen Receptor Agonists,Androgenic Agents,Androgenic Compounds,Agents, Androgenic,Agonist, Androgen Receptor,Agonists, Androgen Receptor,Compounds, Androgenic,Effect, Androgen,Effects, Androgen,Receptor Agonist, Androgen,Receptor Agonists, Androgen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000821 Animal Feed Foodstuff used especially for domestic and laboratory animals, or livestock. Fodder,Animal Feeds,Feed, Animal,Feeds, Animal,Fodders
D000824 Animal Nutritional Physiological Phenomena Nutritional physiology of animals. Animal Nutrition Physiology,Animal Nutritional Physiology Phenomena,Animal Nutritional Physiological Phenomenon,Animal Nutritional Physiology,Animal Nutritional Physiology Phenomenon,Veterinary Nutritional Physiology,Nutrition Physiologies, Animal,Nutrition Physiology, Animal,Nutritional Physiology, Animal,Nutritional Physiology, Veterinary,Physiology, Animal Nutrition,Physiology, Animal Nutritional,Physiology, Veterinary Nutritional
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
January 2006, Journal of AOAC International,
Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
February 2019, Molecular and clinical oncology,
Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
May 2016, International journal of toxicology,
Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
March 2024, Gastroenterologia y hepatologia,
Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
October 1983, Archives of andrology,
Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
June 2004, Reproductive toxicology (Elmsford, N.Y.),
Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
January 2002, Nutrition and cancer,
Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
March 2008, Basic & clinical pharmacology & toxicology,
Mark J McVey, and Gerard M Cooke, and Ivan H A Curran
September 2016, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association,
Copied contents to your clipboard!