Electroneutral K+/HCO3- cotransport in cells of medullary thick ascending limb of rat kidney. 1992

F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
Laboratoire de Physiologie et Endocrinologie Cellulaire Rénale, Université Pierre et Marie Curie, Paris, France.

The renal medullary thick ascending limb (MTAL) of the rat absorbs bicarbonate through luminal H+ secretion and basolateral HCO3- transport into the peritubular space. To characterize HCO3- transport, intracellular pH (pHi) was monitored by use of the pH-sensitive fluorescent probe (2',7')-bis-(carboxyethyl)-(5,6)-carboxyfluorescein in fresh suspensions of rat MTAL tubules. When cells were preincubated in HCO3-/CO2-containing solutions and then abruptly diluted into HCO3-/CO2-free media, the pHi response was an initial alkalinization due to CO2 efflux, followed by an acidification (pHi recovery). The pHi recovery required intracellular HCO3-, was inhibited by 10(-4) M diisothiocyanostilbene-2-2'-disulphonic acid (DIDS), and was not dependent on Cl- or Na+. As assessed by use of the cell membrane potential-sensitive fluorescent probe 3,3'-dipropylthiadicarbocyanine, cell depolarization by abrupt Cl- removal from or addition of 2 mM barium into the external medium did not affect HCO3(-)-dependent pHi recovery, and the latter was not associated per se with any change in potential difference, which indicated that HCO3- transport was electroneutral. The HCO3(-)-dependent pHi recovery was inhibited by raising extracellular potassium concentration and by intracellular potassium depletion. Finally, as measured by use of a K(+)-selective extracellular electrode, a component of K+ efflux out of the cells was HCO3- dependent and DIDS sensitive. The results provide evidence for an electroneutral K+/HCO3- cotransport in rat MTAL cells.

UI MeSH Term Description Entries
D007679 Kidney Medulla The internal portion of the kidney, consisting of striated conical masses, the renal pyramids, whose bases are adjacent to the cortex and whose apices form prominent papillae projecting into the lumen of the minor calyces. Kidney Papilla,Kidney Medullas,Kidney Papillas,Medulla, Kidney,Medullas, Kidney,Papilla, Kidney,Papillas, Kidney
D007684 Kidney Tubules Long convoluted tubules in the nephrons. They collect filtrate from blood passing through the KIDNEY GLOMERULUS and process this filtrate into URINE. Each renal tubule consists of a BOWMAN CAPSULE; PROXIMAL KIDNEY TUBULE; LOOP OF HENLE; DISTAL KIDNEY TUBULE; and KIDNEY COLLECTING DUCT leading to the central cavity of the kidney (KIDNEY PELVIS) that connects to the URETER. Kidney Tubule,Tubule, Kidney,Tubules, Kidney
D008297 Male Males
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012856 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid, Disodium Salt,SITS,SITS Disodium Salt,4 Acetamido 4' isothiocyanatostilbene 2,2' disulfonic Acid,Disodium Salt, SITS

Related Publications

F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
February 1997, The American journal of physiology,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
July 1996, The American journal of physiology,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
December 1996, The American journal of physiology,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
November 1993, Biochimica et biophysica acta,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
July 1996, The American journal of physiology,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
October 2000, Kidney international,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
February 2004, The Journal of physiology,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
September 1989, Kidney international,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
March 1983, Pflugers Archiv : European journal of physiology,
F Leviel, and P Borensztein, and P Houillier, and M Paillard, and M Bichara
February 1987, The American journal of physiology,
Copied contents to your clipboard!