cAMP inhibits TGFbeta1-induced in vitro angiogenesis. 2004

Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
Unitat de Bioquímica i Biologia Molecular, Departament de Ciències Fiològiques II, Campus de Bellvitge, Universitat de Barcelona, C/ Feixa Llarga s/n, E-08907 L'Hospitalet de Llobregat, Spain.

Transforming growth factor-beta (TGFbeta1) is a proangiogenic factor both, in vitro and in vivo, that is mainly involved in the later phases of angiogenesis. In an attempt to identify genes that participate in this effect, we found that TGFbeta1 down-regulates expression of adenylate cyclase VI. In addition, cAMP analogs (8-Bromo-cAMP) and forskolin (an adenylate cyclase activator) also reduced TGFbeta1-induced in vitro angiogenesis in mouse endothelial cell lines and in primary cultures of human umbilical vein endothelial cells on collagen gels. Induction of Ets-1 and plasminogen activator inhibitor-1 (PAI-1) by TGFbeta1 was blocked by these cAMP agonists and activators, in the absence of effects on endothelial cell viability. Moreover, the signal transduction pathways stimulated by TGFbeta1 were unaffected. Thus, Smad2 was normally phosphorylated and translocated to the nucleus in the presence of forskolin. In contrast, transfection studies using the PAI-1-promoter indicated that these cAMP analogues inhibit transcriptional stimulation by TGFbeta1. Electrophoretic mobility shift assay showed that Smad2/3 were bound normally to a TGFbeta1-response region in the presence of the cAMP analogs. In all, these data suggest that the cAMP pathway inhibits the transcriptional activity of Smads, that could be responsible for the block of the TGFbeta1-induced in vitro angiogenesis caused by this second messenger.

UI MeSH Term Description Entries
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014471 Umbilical Veins Venous vessels in the umbilical cord. They carry oxygenated, nutrient-rich blood from the mother to the FETUS via the PLACENTA. In humans, there is normally one umbilical vein. Umbilical Vein,Vein, Umbilical,Veins, Umbilical
D015124 8-Bromo Cyclic Adenosine Monophosphate A long-acting derivative of cyclic AMP. It is an activator of cyclic AMP-dependent protein kinase, but resistant to degradation by cyclic AMP phosphodiesterase. 8-Bromo-cAMP,8-Br Cyclic AMP,8-Bromo Cyclic AMP,8-Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8-Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8-Bromoadenosine 3',5'-Cyclic Monophosphate,Br Cycl AMP,8 Br Cyclic AMP,8 Bromo Cyclic AMP,8 Bromo Cyclic Adenosine Monophosphate,8 Bromo Cyclic Adenosine Monophosphate, Monosodium Salt,8 Bromo Cyclic Adenosine Monophosphate, Sodium Salt,8 Bromo cAMP,8 Bromoadenosine 3',5' Cyclic Monophosphate,AMP, Br Cycl,Cyclic AMP, 8-Br,Cyclic AMP, 8-Bromo
D016212 Transforming Growth Factor beta A factor synthesized in a wide variety of tissues. It acts synergistically with TGF-alpha in inducing phenotypic transformation and can also act as a negative autocrine growth factor. TGF-beta has a potential role in embryonal development, cellular differentiation, hormone secretion, and immune function. TGF-beta is found mostly as homodimer forms of separate gene products TGF-beta1, TGF-beta2 or TGF-beta3. Heterodimers composed of TGF-beta1 and 2 (TGF-beta1.2) or of TGF-beta2 and 3 (TGF-beta2.3) have been isolated. The TGF-beta proteins are synthesized as precursor proteins. Bone-Derived Transforming Growth Factor,Platelet Transforming Growth Factor,TGF-beta,Milk Growth Factor,TGFbeta,Bone Derived Transforming Growth Factor,Factor, Milk Growth,Growth Factor, Milk

Related Publications

Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
March 2009, Biochemical pharmacology,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
June 1995, Journal of cellular biochemistry,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
December 2014, Oncology reports,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
February 2009, Investigative ophthalmology & visual science,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
January 1998, Journal of vascular research,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
January 2016, The American journal of Chinese medicine,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
September 2002, Biochemical and biophysical research communications,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
October 2003, Biochemical and biophysical research communications,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
June 2015, Life sciences,
Beatriz del Valle-Pérez, and Ofelia Maria Martínez-Estrada, and Senén Vilaró, and Francesc Ventura, and Francesc Viñals
May 2007, Molecular cancer therapeutics,
Copied contents to your clipboard!