Differential biological effects of 1,25-dihydroxyVitamin D3 on melanoma cell lines in vitro. 2004

Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
Department of Dermatology, The Saarland University Hospital, Homburg, Germany.

1,25-DihydroxyVitamin D(3) and analogs have been shown to inhibit proliferation and to induce differentiation in different cell types, including human melanocytes. However, various tumor cell lines that fail to respond to the antiproliferative effects of Vitamin D analogs have also been reported. Using real-time PCR (LightCycler), we have compared mRNA expression of Vitamin D receptor (VDR), Vitamin D-25-hydroxylase (25-OHase), 25-hydroxyVitamin D-1alpha-hydroxylase (1alpha-OHase), and 1,25-dihydroxyVitamin D-24-hydroxylase (24-OHase) in a melanoma cell line that responds to antiproliferative effects of Vitamin D (MeWo) with a non-responsive melanoma cell line (SkMel5). Additionally, modulation of cell proliferation by calpain inhibitors, as well as regulation of mRNA expression of VDR, 1alpha-OHase, and 24-OHase genes by Vitamin D analogs were assessed in melanoma cell lines in vitro using a WST-1 based colorimetric assay and real-time PCR, respectively. RNA for VDR, 25-OHase, 1alpha-OHase, and 24-OHase was detected in melanoma cell lines. In contrast to SkMel5 cells, treatment of MeWo cells with calcitriol resulted in a dose-dependent increase in mRNA for VDR and 24-OHase as well as in a suppression of cell proliferation (up to approximately 50%). Our findings demonstrate that local synthesis or metabolism of Vitamin D metabolites may be of importance for growth regulation of MM and melanoma cell lines. Additionally, metastasizing MM represents a promising target for palliative treatment with new Vitamin D analogs that exert little calcemic side effects or for pharmacological modulation of calcitriol synthesis/metabolism in these tumors.

UI MeSH Term Description Entries
D008545 Melanoma A malignant neoplasm derived from cells that are capable of forming melanin, which may occur in the skin of any part of the body, in the eye, or, rarely, in the mucous membranes of the genitalia, anus, oral cavity, or other sites. It occurs mostly in adults and may originate de novo or from a pigmented nevus or malignant lentigo. Melanomas frequently metastasize widely, and the regional lymph nodes, liver, lungs, and brain are likely to be involved. The incidence of malignant skin melanomas is rising rapidly in all parts of the world. (Stedman, 25th ed; from Rook et al., Textbook of Dermatology, 4th ed, p2445) Malignant Melanoma,Malignant Melanomas,Melanoma, Malignant,Melanomas,Melanomas, Malignant
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013250 Steroid Hydroxylases Cytochrome P-450 monooxygenases (MIXED FUNCTION OXYGENASES) that are important in steroid biosynthesis and metabolism. Steroid Hydroxylase,Steroid Monooxygenases,Hydroxylase, Steroid,Hydroxylases, Steroid,Monooxygenases, Steroid
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
October 2021, International ophthalmology,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
November 1983, The Journal of biological chemistry,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
November 1994, Endocrinology,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
December 1986, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
March 1982, Cancer research,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
October 2008, Oncology reports,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
December 1995, The Journal of steroid biochemistry and molecular biology,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
February 1996, The Journal of surgical research,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
January 2006, Anticancer research,
Markus Seifert, and Martin Rech, and Viktor Meineke, and Wolfgang Tilgen, and Jörg Reichrath
June 2014, Journal of dietary supplements,
Copied contents to your clipboard!