Ultra low concentrations of morphine increase neurite outgrowth in cultured rat spinal cord and cerebral cortical neurons. 2004

Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, USA.

The present study was undertaken to evaluate the effects of ultra low concentrations (10(-9) or 10(-14)M) of morphine on neurite elongation in cultured neurons dissociated from rat spinal cords and cerebral cortex. In fetal serum (FS) or fetal serum-free supplemented with cAMP media, the length of longest neurite was significantly increased by 10(-9) or 10(-14)M morphine. For example, 10(-14)M morphine increased neurite length by 24 +/- 0.5% and 27 +/- 0.3% in spinal cord neurons, and 18 +/- 0.2% and 17 +/- 0.6% in cortical neurons. Morphine (10(-6)M) had no significant effect on neurite length of spinal and cortical neurons. The relative frequency distribution of neurite length revealed 61 +/- 2.7% of spinal neurons and 48 +/- 2.6% of cortical neurons are responsive to ultra low concentrations of morphine. In the responsive populations, morphine (10(-14)M) enhanced the neurite outgrowth in spinal neurons by 58 +/- 0.9% and 48 +/- 1.2% and in cortical neurons by 31 +/- 0.6% and 28 +/- 0.9% in FS and cAMP-supplemented media, respectively. Pretreatment with naloxone did not prevent the morphine effect. The result shows that morphine at ultra low concentrations enhances neurite outgrowth of spinal and cortical neurons via a naloxone-independent mechanism.

UI MeSH Term Description Entries
D009020 Morphine The principal alkaloid in opium and the prototype opiate analgesic and narcotic. Morphine has widespread effects in the central nervous system and on smooth muscle. Morphine Sulfate,Duramorph,MS Contin,Morphia,Morphine Chloride,Morphine Sulfate (2:1), Anhydrous,Morphine Sulfate (2:1), Pentahydrate,Oramorph SR,SDZ 202-250,SDZ202-250,Chloride, Morphine,Contin, MS,SDZ 202 250,SDZ 202250,SDZ202 250,SDZ202250,Sulfate, Morphine
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D009292 Narcotic Antagonists Agents inhibiting the effect of narcotics on the central nervous system. Competitive Opioid Antagonist,Narcotic Antagonist,Opioid Antagonist,Opioid Antagonists,Opioid Receptor Antagonist,Opioid Reversal Agent,Competitive Opioid Antagonists,Opioid Receptor Antagonists,Opioid Reversal Agents,Agent, Opioid Reversal,Agents, Opioid Reversal,Antagonist, Competitive Opioid,Antagonist, Narcotic,Antagonist, Opioid,Antagonist, Opioid Receptor,Antagonists, Competitive Opioid,Antagonists, Narcotic,Antagonists, Opioid,Antagonists, Opioid Receptor,Opioid Antagonist, Competitive,Opioid Antagonists, Competitive,Receptor Antagonist, Opioid,Receptor Antagonists, Opioid,Reversal Agent, Opioid,Reversal Agents, Opioid
D009294 Narcotics Agents that induce NARCOSIS. Narcotics include agents that cause somnolence or induced sleep (STUPOR); natural or synthetic derivatives of OPIUM or MORPHINE or any substance that has such effects. They are potent inducers of ANALGESIA and OPIOID-RELATED DISORDERS. Analgesics, Narcotic,Narcotic Analgesics,Narcotic,Narcotic Effect,Narcotic Effects,Effect, Narcotic,Effects, Narcotic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D013116 Spinal Cord A cylindrical column of tissue that lies within the vertebral canal. It is composed of WHITE MATTER and GRAY MATTER. Coccygeal Cord,Conus Medullaris,Conus Terminalis,Lumbar Cord,Medulla Spinalis,Myelon,Sacral Cord,Thoracic Cord,Coccygeal Cords,Conus Medullari,Conus Terminali,Cord, Coccygeal,Cord, Lumbar,Cord, Sacral,Cord, Spinal,Cord, Thoracic,Cords, Coccygeal,Cords, Lumbar,Cords, Sacral,Cords, Spinal,Cords, Thoracic,Lumbar Cords,Medulla Spinali,Medullari, Conus,Medullaris, Conus,Myelons,Sacral Cords,Spinal Cords,Spinali, Medulla,Spinalis, Medulla,Terminali, Conus,Terminalis, Conus,Thoracic Cords

Related Publications

Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
December 2001, Neurological research,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
February 1995, Neurological research,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
August 1994, Journal of the neurological sciences,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
December 2023, Neuroscience,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
April 2011, Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
June 2008, Neurochemical research,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
March 1984, Cellular and molecular neurobiology,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
October 2016, Neurochemical research,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
April 2010, Neuroscience bulletin,
Eugen Brailoiu, and Jennifer Hoard, and G Cristina Brailoiu, and Michelle Chi, and Ramona Godbolde, and Nae J Dun
March 2002, Neurochemical research,
Copied contents to your clipboard!