Action potential duration determines sarcoplasmic reticulum Ca2+ reloading in mammalian ventricular myocytes. 2004

Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
Centro de Engenharia Biomédica, Universidade Estadual de Campinas, 13084-971 Campinas, SP, Brazil. rosana@ceb.unicamp.br

After sarcoplasmic reticulum (SR) Ca2+ depletion in intact ventricular myocytes, electrical activity promotes SR Ca2+ reloading and recovery of twitch amplitude. In ferret, recovery of twitch and caffeine-induced contracture required fewer twitches than in rabbit or rat. In rat, there was no difference in action potential duration at 90% repolarization (APD90) at steady state (SS) versus at the first post-depletion (PD) twitch. The SS APD90 was similar in ferret and rabbit (but longer than in rat). However, compared to SS, the PD APD90 was lengthened in ferret, but shortened in rabbit. When rabbit myocytes were subjected to AP-clamp patterns during SR Ca2+ reloading (ferret- or rabbit-type APs), reloading was much faster using the ferret AP templates. We conclude that the faster SR Ca2+ refilling in ferret is due to the increased Ca2+ influx during the longer PD AP. The PD versus SS APD90 difference was suppressed by thapsigargin in ferret (indicating Ca2+ dependence). In rabbit, the PD AP shortening depended on the preceding diastolic interval (rather than Ca2+), because rest produced the same AP shortening, and SS APD90 increased as a function of frequency (in contrast to ferret). Transient outward current (Ito) was larger and recovered from inactivation much faster in ferret than in rabbit. Moreover, slow Ito recovery (tau approximately 3 s) in rabbit was a much larger fraction of Ito. Our data and a computational model (including two Ito components) suggest that in rabbit the slowly recovering Ito is responsible for short post-rest and PD APs, for the unusual frequency dependence of APD90, and ultimately for the slower post-depletion SR Ca2+ reloading.

UI MeSH Term Description Entries
D008297 Male Males
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002110 Caffeine A methylxanthine naturally occurring in some beverages and also used as a pharmacological agent. Caffeine's most notable pharmacological effect is as a central nervous system stimulant, increasing alertness and producing agitation. It also relaxes SMOOTH MUSCLE, stimulates CARDIAC MUSCLE, stimulates DIURESIS, and appears to be useful in the treatment of some types of headache. Several cellular actions of caffeine have been observed, but it is not entirely clear how each contributes to its pharmacological profile. Among the most important are inhibition of cyclic nucleotide PHOSPHODIESTERASES, antagonism of ADENOSINE RECEPTORS, and modulation of intracellular calcium handling. 1,3,7-Trimethylxanthine,Caffedrine,Coffeinum N,Coffeinum Purrum,Dexitac,Durvitan,No Doz,Percoffedrinol N,Percutaféine,Quick-Pep,Vivarin,Quick Pep,QuickPep
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005289 Ferrets Semidomesticated variety of European polecat much used for hunting RODENTS and/or RABBITS and as a laboratory animal. It is in the subfamily Mustelinae, family MUSTELIDAE. Domestic Polecat,Domestic Polecats,European Polecat,European Polecats,Ferret,Mustela putorius,Mustela putorius furo,Polecat, Domestic,Polecat, European,Polecats, Domestic,Polecats, European
D006352 Heart Ventricles The lower right and left chambers of the heart. The right ventricle pumps venous BLOOD into the LUNGS and the left ventricle pumps oxygenated blood into the systemic arterial circulation. Cardiac Ventricle,Cardiac Ventricles,Heart Ventricle,Left Ventricle,Right Ventricle,Left Ventricles,Right Ventricles,Ventricle, Cardiac,Ventricle, Heart,Ventricle, Left,Ventricle, Right,Ventricles, Cardiac,Ventricles, Heart,Ventricles, Left,Ventricles, Right
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species

Related Publications

Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
June 2012, American journal of physiology. Heart and circulatory physiology,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
November 1996, The American journal of physiology,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
August 2008, Biophysical journal,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
November 2005, Circulation research,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
February 2000, Journal of bioenergetics and biomembranes,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
December 1998, The American journal of physiology,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
November 1995, The Journal of physiology,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
June 2006, American journal of physiology. Cell physiology,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
October 2006, Biophysical journal,
Rosana A Bassani, and Julio Altamirano, and José L Puglisi, and Donald M Bers
November 1993, The Journal of physiology,
Copied contents to your clipboard!