Role of DNA polymerase eta in the bypass of abasic sites in yeast cells. 2004

Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA.

Abasic (AP) sites are major DNA lesions and are highly mutagenic. AP site-induced mutagenesis largely depends on translesion synthesis. We have examined the role of DNA polymerase eta (Poleta) in translesion synthesis of AP sites by replicating a plasmid containing a site-specific AP site in yeast cells. In wild-type cells, AP site bypass resulted in preferred C insertion (62%) over A insertion (21%), as well as -1 deletion (3%), and complex event (14%) containing multiple mutations. In cells lacking Poleta (rad30), Rev1, Polzeta (rev3), and both Poleta and Polzeta, translesion synthesis was reduced to 30%, 30%, 15% and 3% of the wild-type level, respectively. C insertion opposite the AP site was reduced in rad30 mutant cells and was abolished in cells lacking Rev1 or Polzeta, but significant A insertion was still detected in these mutant cells. While purified yeast Polalpha effectively inserted an A opposite the AP site in vitro, purified yeast Poldelta was much less effective in A insertion opposite the lesion due to its 3'-->5' proofreading exonuclease activity. Purified yeast Poleta performed extension synthesis from the primer 3' A opposite the lesion. These results show that Poleta is involved in translesion synthesis of AP sites in yeast cells, and suggest that an important role of Poleta is to catalyze extension following A insertion opposite the lesion. Consistent with these conclusions, rad30 mutant cells were sensitive to methyl methanesulfonate (MMS), and rev1 rad30 or rev3 rad30 double mutant cells were synergistically more sensitive to MMS than the respective single mutant strains.

UI MeSH Term Description Entries
D008741 Methyl Methanesulfonate An alkylating agent in cancer therapy that may also act as a mutagen by interfering with and causing damage to DNA. Methylmethane Sulfonate,Dimethylsulfonate,Mesilate, Methyl,Methyl Mesylate,Methyl Methylenesulfonate,Methylmesilate,Mesylate, Methyl,Methanesulfonate, Methyl,Methyl Mesilate
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D009713 Nucleotidyltransferases A class of enzymes that transfers nucleotidyl residues. EC 2.7.7. Nucleotidyltransferase
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004258 DNA Polymerase III A DNA-dependent DNA polymerase characterized in E. coli and other lower organisms but may be present in higher organisms. Use also for a more complex form of DNA polymerase III designated as DNA polymerase III* or pol III* which is 15 times more active biologically than DNA polymerase I in the synthesis of DNA. This polymerase has both 3'-5' and 5'-3' exonuclease activities, is inhibited by sulfhydryl reagents, and has the same template-primer dependence as pol II. DNA Polymerase delta,DNA-Dependent DNA Polymerase III,DNA Pol III,DNA Dependent DNA Polymerase III,Polymerase III, DNA,Polymerase delta, DNA
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D005090 Exodeoxyribonucleases A family of enzymes that catalyze the exonucleolytic cleavage of DNA. It includes members of the class EC 3.1.11 that produce 5'-phosphomonoesters as cleavage products. DNA Exonucleases,Exonucleases, DNA

Related Publications

Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
March 2001, The Journal of biological chemistry,
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
September 2015, Mutation research,
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
March 2000, The Journal of biological chemistry,
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
November 2009, The Journal of biological chemistry,
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
July 2002, The EMBO journal,
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
July 2001, Proceedings of the National Academy of Sciences of the United States of America,
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
February 1994, Genetics,
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
January 2002, Nucleic acids research. Supplement (2001),
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
February 2013, Biochemistry,
Bo Zhao, and Zhongwen Xie, and Huiyun Shen, and Zhigang Wang
March 2002, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!