Pressure alters endothelial effects upon vascular smooth muscle cells by decreasing smooth muscle cell proliferation and increasing smooth muscle cell apoptosis. 2004

Angela G Vouyouka, and Yan Jiang, and Marc D Basson
Department of Surgery, John D. Dingell VA Medical Center and Wayne State University, Detroit, MI 48201-1932, USA.

BACKGROUND Although de-endothelialization after vascular intervention is associated with intimal hyperplasia, endothelial cells (ECs) increase smooth muscle cell (SMC) numbers in conventional cocultures. In previously published work, SMCs cocultured with ECs in a chronic high-pressure environment exhibited significantly decreased cell counts compared to monocultured SMCs in the same high pressure. This finding contrasted with SMCs cocultured with ECs in ambient pressure, which exhibited significantly higher cell counts than the monocultured SMCs in ambient pressure. We now hypothesize that extracellular pressure decreases SMC number during coculture with ECs by decreasing SMC proliferation through nuclear protein regulation and by increasing SMC apoptosis. Furthermore, this effect depends on the EC response to pressure. METHODS Rat aortic SMCs were cultured independently (SMC/0) or cocultured with EC (SMC/EC) under either atmospheric or increased pressure (130-135 mmHg over ambient, SMC/0-P and SMC/EC-P) for 5 days. We assessed SMC proliferative potential by determining c-myc expression (by protein analysis), apoptosis (by cell counting, staining with acridine orange or TUNEL technique), and topoisomerase IIalpha levels. Parallel studies measured the effects of conditioned media from monocultured EC and SMC exposed for 5 days to control or increased pressure on recipient SMC growing in conventional culture. RESULTS In high-pressure conditions, SMC/EC-P exhibited 42% less c-myc expression than SMC/0s (P = .00028). Significantly increased apoptotic activity (22 +/- 1.8%) in SMC/EC-Ps compared to SMC/0s was coupled with significantly lower topoisomerase IIalpha levels. Interestingly, pressure (SMC/0-P) and EC coculture (SMC/EC) each separately raised myocyte apoptotic activity to 15 +/- 1.3% and 17 +/- 2.0%, respectively. Conditioned media from pressurized ECs caused a 20% decrease in cell counts in target SMC compared to conditioned media from ECs in atmospheric pressure. Media from pressurized SMCs did not affect target SMCs. CONCLUSIONS In a model designed to study SMC/EC interactions in a dynamic environment, EC exposure to pressure alters the growth characteristics and apoptotic activity of SMCs via a secreted factor. Extracellular pressure may alter EC regulation of SMC behavior and regulate intimal hyperplasia.

UI MeSH Term Description Entries
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016259 Genes, myc Family of retrovirus-associated DNA sequences (myc) originally isolated from an avian myelocytomatosis virus. The proto-oncogene myc (c-myc) codes for a nuclear protein which is involved in nucleic acid metabolism and in mediating the cellular response to growth factors. Truncation of the first exon, which appears to regulate c-myc expression, is crucial for tumorigenicity. The human c-myc gene is located at 8q24 on the long arm of chromosome 8. L-myc Genes,N-myc Genes,c-myc Genes,myc Genes,v-myc Genes,L-myc Proto-Oncogenes,N-myc Proto-Oncogenes,c-myc Proto-Oncogenes,myc Oncogene,v-myc Oncogenes,Gene, L-myc,Gene, N-myc,Gene, c-myc,Gene, myc,Gene, v-myc,Genes, L-myc,Genes, N-myc,Genes, c-myc,Genes, v-myc,L myc Genes,L myc Proto Oncogenes,L-myc Gene,L-myc Proto-Oncogene,N myc Genes,N myc Proto Oncogenes,N-myc Gene,N-myc Proto-Oncogene,Oncogene, myc,Oncogene, v-myc,Oncogenes, myc,Oncogenes, v-myc,Proto-Oncogene, L-myc,Proto-Oncogene, N-myc,Proto-Oncogene, c-myc,Proto-Oncogenes, L-myc,Proto-Oncogenes, N-myc,Proto-Oncogenes, c-myc,c myc Genes,c myc Proto Oncogenes,c-myc Gene,c-myc Proto-Oncogene,myc Gene,myc Oncogenes,v myc Genes,v myc Oncogenes,v-myc Gene,v-myc Oncogene
D017077 Culture Media, Conditioned Culture media containing biologically active components obtained from previously cultured cells or tissues that have released into the media substances affecting certain cell functions (e.g., growth, lysis). Conditioned Culture Media,Conditioned Culture Medium,Conditioned Media,Conditioned Medium,Culture Medium, Conditioned,Media, Conditioned,Medium, Conditioned
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis
D042783 Endothelial Cells Highly specialized EPITHELIAL CELLS that line the HEART; BLOOD VESSELS; and lymph vessels, forming the ENDOTHELIUM. They are polygonal in shape and joined together by TIGHT JUNCTIONS. The tight junctions allow for variable permeability to specific macromolecules that are transported across the endothelial layer. Capillary Endothelial Cells,Lymphatic Endothelial Cells,Vascular Endothelial Cells,Capillary Endothelial Cell,Cell, Capillary Endothelial,Cell, Endothelial,Cell, Lymphatic Endothelial,Cell, Vascular Endothelial,Cells, Capillary Endothelial,Cells, Endothelial,Cells, Lymphatic Endothelial,Cells, Vascular Endothelial,Endothelial Cell,Endothelial Cell, Capillary,Endothelial Cell, Lymphatic,Endothelial Cell, Vascular,Endothelial Cells, Capillary,Endothelial Cells, Lymphatic,Endothelial Cells, Vascular,Lymphatic Endothelial Cell,Vascular Endothelial Cell

Related Publications

Angela G Vouyouka, and Yan Jiang, and Marc D Basson
August 2005, Zhonghua yi xue za zhi,
Angela G Vouyouka, and Yan Jiang, and Marc D Basson
January 2010, Microvascular research,
Angela G Vouyouka, and Yan Jiang, and Marc D Basson
February 1989, Journal of cellular physiology,
Angela G Vouyouka, and Yan Jiang, and Marc D Basson
August 2003, Biochemical and biophysical research communications,
Angela G Vouyouka, and Yan Jiang, and Marc D Basson
September 2008, Acta biochimica et biophysica Sinica,
Angela G Vouyouka, and Yan Jiang, and Marc D Basson
December 2008, Cell cycle (Georgetown, Tex.),
Angela G Vouyouka, and Yan Jiang, and Marc D Basson
March 2021, International heart journal,
Angela G Vouyouka, and Yan Jiang, and Marc D Basson
October 2020, Apoptosis : an international journal on programmed cell death,
Angela G Vouyouka, and Yan Jiang, and Marc D Basson
September 2006, American journal of physiology. Lung cellular and molecular physiology,
Copied contents to your clipboard!