Effects of primer-template sequence on ATP-dependent removal of chain-terminating nucleotide analogues by HIV-1 reverse transcriptase. 2004

Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33136-1015, USA.

HIV-1 reverse transcriptase can remove chain terminators from blocked DNA ends through a nucleotide-dependent mechanism. We show that the catalytic efficiency of the removal reaction can vary several hundred-fold in different sequence contexts and is most strongly affected by the nature of the base pair at the 3'-primer terminus and the six base pairs upstream of it. Similar effects of the upstream sequence were observed with primer-templates terminated with 2',3'-dideoxy-AMP, 2',3'-dideoxy-CMP, or 2',3'-dideoxy-GMP. However, the removal of 2',3'-dideoxy-TMP or 3'-azido-2',3'-dideoxy-TMP was much less influenced by upstream primer-template sequence, and the rate of excision of these thymidylate analogues was greater than or equal to that of the other chain-terminating residues in each sequence context tested. These results strongly indicate that the primer terminus and adjacent upstream base pairs interact with reverse transcriptase in a sequence-dependent manner that affects the removal reaction. We conclude that primer-template sequence context is a major factor to consider when evaluating the removal of different chain terminators by HIV-1 reverse transcriptase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D003838 Deoxyadenine Nucleotides Adenine nucleotides which contain deoxyribose as the sugar moiety. Deoxyadenosine Phosphates,Nucleotides, Deoxyadenine,Phosphates, Deoxyadenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013698 Templates, Genetic Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES. Genetic Template,Genetic Templates,Template, Genetic
D054303 HIV Reverse Transcriptase A reverse transcriptase encoded by the POL GENE of HIV. It is a heterodimer of 66 kDa and 51 kDa subunits that are derived from a common precursor protein. The heterodimer also includes an RNAse H activity (RIBONUCLEASE H, HUMAN IMMUNODEFICIENCY VIRUS) that plays an essential role the viral replication process. Reverse Transcriptase, HIV,Reverse Transcriptase, Human Immunodeficiency Virus,Transcriptase, HIV Reverse
D054306 Dideoxynucleotides The phosphate esters of DIDEOXYNUCLEOSIDES. Dideoxynucleotide Triphosphates,ddNTPs,Triphosphates, Dideoxynucleotide
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide

Related Publications

Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
November 1998, Proceedings of the National Academy of Sciences of the United States of America,
Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
October 1997, Biochemistry,
Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
October 1997, Proceedings of the National Academy of Sciences of the United States of America,
Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
September 1978, Proceedings of the National Academy of Sciences of the United States of America,
Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
July 2002, Antimicrobial agents and chemotherapy,
Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
January 2010, PloS one,
Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
August 1993, Biochemistry,
Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
September 2006, The Journal of biological chemistry,
Peter R Meyer, and Anthony J Smith, and Suzanne E Matsuura, and Walter A Scott
July 1999, Molecular cell,
Copied contents to your clipboard!