Blocking of the alpha interferon-induced Jak-Stat signaling pathway by Japanese encephalitis virus infection. 2004

Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.

The induction of alpha/beta interferon (IFN-alpha/beta) is a powerful host defense mechanism against viral infection, and many viruses have evolved strategies to overcome the antiviral effects of IFN. In this study, we found that IFN-alpha had only some degree of antiviral activity against Japanese encephalitis virus (JEV) infection, in contrast to another flavivirus, dengue virus serotype 2, which was highly sensitive to IFN-alpha in the cultured cell system. JEV infection appeared to render cells resistant to IFN-alpha since the IFN-alpha-induced luciferase reporter activity driven by the IFN-stimulated response element (ISRE) was gradually reduced as the JEV infection progressed. Since the biological activities of IFNs are triggered by the Janus kinase (Jak) signal transducer and activation of transcription (Stat) signaling cascade, we then studied the activation of Jak-Stat pathway in the virus-infected cells. The IFN-alpha-stimulated tyrosine phosphorylation of Stat1, Stat2, and Stat3 was suppressed by JEV in a virus replication and de novo protein synthesis-dependent manner. Furthermore, JEV infection blocked the tyrosine phosphorylation of IFN receptor-associated Jak kinase, Tyk2, without affecting the expression of IFN-alpha/beta receptor on the cell surface. Consequently, expression of several IFN-stimulated genes in response to IFN-alpha stimulation was also reduced in the JEV-infected cells. Overall, our findings suggest that JEV counteracts the effect of IFN-alpha/beta by blocking Tyk2 activation, thereby resulting in inhibition of Jak-Stat signaling pathway.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D003716 Dengue Virus A species of the genus FLAVIVIRUS which causes an acute febrile and sometimes hemorrhagic disease in man. Dengue is mosquito-borne and four serotypes are known. Breakbone Fever Virus,Breakbone Fever Viruses,Dengue Viruses,Fever Virus, Breakbone,Fever Viruses, Breakbone,Virus, Breakbone Fever,Virus, Dengue,Viruses, Breakbone Fever,Viruses, Dengue
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004664 Encephalitis Virus, Japanese A species of FLAVIVIRUS, one of the Japanese encephalitis virus group (ENCEPHALITIS VIRUSES, JAPANESE), which is the etiological agent of Japanese encephalitis found in Asia, southeast Asia, and the Indian subcontinent. Japanese B Encephalitis Virus,Japanese Encephalitis Virus,Virus, Japanese Encephalitis
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression

Related Publications

Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
November 2004, Science's STKE : signal transduction knowledge environment,
Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
March 1995, Science (New York, N.Y.),
Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
August 2006, Journal of hepatology,
Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
June 2023, Virologica Sinica,
Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
November 2004, Science's STKE : signal transduction knowledge environment,
Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
March 2004, Journal of cell science,
Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
July 2019, Journal of virology,
Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
March 2004, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Ren-Jye Lin, and Ching-Len Liao, and Elong Lin, and Yi-Ling Lin
November 2007, Antiviral research,
Copied contents to your clipboard!