Correlative microscopy of Purkinje dendritic spines: a field emission scanning and transmission electron microscopic study. 2004

O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
Institute of Biological Investigations, Faculty of Medicine, University of Zulia, Maracaibo, Venezuela. ocastejo@cantv.net

Purkinje dendritic spines (Pds) of mouse cerebellar cortex were examined by field emission scanning electron microscopy (FESEM) and by transmission electron microscopy (TEM) using ultrathin sections and freeze-etching replicas, to study their three-dimensional features and intramembrane morphology. FESEM showed unattached mushroom-type, elongated and lanceolate Pds separated by 100-500 nm on the dendritic shaft surface. High resolution FESEM showed 25-50 nm globular subunits at the spine postsynaptic density corresponding to the localization of postsynaptic proteins and/or postsynaptic receptors. TEM images of ultrathin sections showed gem-like, mushroom-shaped, lanceolate and neckless or stubby spines. Freeze etching replicas exposed postsynaptic intramembrane particles that can be correlated with the globular subunits observed at high resolution FESEM. Parallel and climbing fiber endings were observed making asymmetric synaptic contacts with the Pds heads. Simultaneous contacts with the necks and heads were also found. The variety of Pds shapes were interpreted as spine conformational changes related with spine dynamic, and spine plasticity.

UI MeSH Term Description Entries
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011689 Purkinje Cells The output neurons of the cerebellar cortex. Purkinje Cell,Purkinje Neuron,Purkyne Cell,Cell, Purkinje,Cell, Purkyne,Cells, Purkinje,Cells, Purkyne,Neuron, Purkinje,Neurons, Purkinje,Purkinje Neurons,Purkyne Cells
D002525 Cerebellar Cortex The superficial GRAY MATTER of the CEREBELLUM. It consists of two main layers, the stratum moleculare and the stratum granulosum. Cortex Cerebelli,Cerebelli, Cortex,Cerebellus, Cortex,Cortex Cerebellus,Cortex, Cerebellar
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D005613 Freeze Etching A replica technique in which cells are frozen to a very low temperature and cracked with a knife blade to expose the interior surfaces of the cells or cell membranes. The cracked cell surfaces are then freeze-dried to expose their constituents. The surfaces are now ready for shadowing to be viewed using an electron microscope. This method differs from freeze-fracturing in that no cryoprotectant is used and, thus, allows for the sublimation of water during the freeze-drying process to etch the surfaces. Etching, Freeze
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D046529 Microscopy, Electron, Transmission Electron microscopy in which the ELECTRONS or their reaction products that pass down through the specimen are imaged below the plane of the specimen. Electron Diffraction Microscopy,Electron Microscopy, Transmission,Microscopy, Electron Diffraction,Transmission Electron Microscopy,Diffraction Microscopy, Electron,Microscopy, Transmission Electron
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
June 1975, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles,
O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
December 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
December 1977, Laboratory investigation; a journal of technical methods and pathology,
O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
January 1979, Scanning electron microscopy,
O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
January 1990, Ultrastructural pathology,
O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
January 1989, The American journal of cardiovascular pathology,
O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
January 1980, Cell and tissue research,
O J Castejón, and A Castellano, and G Arismendi, and R Apkarian
January 1980, Scanning electron microscopy,
Copied contents to your clipboard!