An inwardly rectifying whole cell current induced by Gq-coupled receptors. 2004

Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
Renal Division and Center for Clinical Research, University Hospital Freiburg, Breisacherstr. 66, 79106 Freiburg, Germany.

Ca(2+) influx across the plasma membrane after stimulation of G protein-coupled receptors is important for many physiological functions. Here we studied the regulation of an inwardly rectifying whole cell current and its putative role in Ca(2+) entry in Xenopus oocytes. Expression of P2Y(1) or M1 receptors in Xenopus oocytes elicited a characteristic inwardly rectifying current without receptor stimulation. This current displayed distinct activation and inactivation kinetics and was highly Ca(2+)-dependent. After stimulation of endogenous G(q)-coupled receptors in water-injected cells similar currents were observed. We therefore speculated that the current could be activated via Ca(2+) store depletion induced by constitutive stimulation of the IP(3) cascade in cells overexpressing G(q)-coupled receptors. Receptor-independent Ca(2+) store depletion also induced the current. In conclusion, this current is activated after store depletion suggesting a role in Ca(2+) entry after stimulation of G(q)-coupled receptors. Finally, our data do not support the proposed ionotropic properties of the P2Y(1) receptor.

UI MeSH Term Description Entries
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels
D043562 Receptors, G-Protein-Coupled The largest family of cell surface receptors involved in SIGNAL TRANSDUCTION. They share a common structure and signal through HETEROTRIMERIC G-PROTEINS. G Protein Coupled Receptor,G-Protein-Coupled Receptor,G-Protein-Coupled Receptors,G Protein Coupled Receptors,Receptor, G-Protein-Coupled,Receptors, G Protein Coupled
D043643 Receptor, Muscarinic M1 A specific subtype of muscarinic receptor that has a high affinity for the drug PIRENZEPINE. It is found in the peripheral GANGLIA where it signals a variety of physiological functions such as GASTRIC ACID secretion and BRONCHOCONSTRICTION. This subtype of muscarinic receptor is also found in neuronal tissues including the CEREBRAL CORTEX and HIPPOCAMPUS where it mediates the process of MEMORY and LEARNING. Muscarinic Receptor M1,Muscarinic Receptors M1,Receptors, Muscarinic M1,M1 Receptor, Muscarinic,M1 Receptors, Muscarinic,M1, Muscarinic Receptor,M1, Muscarinic Receptors,Muscarinic M1 Receptor,Muscarinic M1 Receptors,Receptor M1, Muscarinic,Receptors M1, Muscarinic
D053496 Inositol 1,4,5-Trisphosphate Receptors Intracellular receptors that bind to INOSITOL 1,4,5-TRISPHOSPHATE and play an important role in its intracellular signaling. Inositol 1,4,5-trisphosphate receptors are calcium channels that release CALCIUM in response to increased levels of inositol 1,4,5-trisphosphate in the CYTOPLASM. Inositol 1,4,5-Triphosphate Receptor,Inositol 1,4,5-Triphosphate Receptors,Inositol 1,4,5-Trisphosphate Receptor,1,4,5-INTP Receptor,INSP3 Receptor,INSP3 Receptor Type 1,INSP3 Receptor Type 2,INSP3 Receptor Type 3,IP3 Receptor,Inositol 1,4,5-trisphosphate Receptor Subtype 3,Inositol 1,4,5-trisphosphate Receptor Type 1,Inositol 1,4,5-trisphosphate Receptor Type 2,Inositol 1,4,5-trisphosphate Receptor Type 3,Inositol Triphosphate Receptor,Inositol-1,4,5-Triphosphate Receptor,Receptor, Inositol-1,4,5-triphosphate,Type 1 Inositol 1,4,5-trisphosphate Receptor,Type 3 Inositol 1,4,5-trisphosphate Receptor,Receptor, INSP3,Receptor, IP3,Receptor, Inositol Triphosphate,Triphosphate Receptor, Inositol

Related Publications

Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
January 1998, The Journal of physiology,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
November 2006, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
March 1992, The Journal of membrane biology,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
March 2001, FEBS letters,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
December 2010, The Journal of biological chemistry,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
June 1989, The American journal of physiology,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
October 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
April 1999, Neuroscience,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
June 1998, The Journal of physiology,
Björn Buchholz, and Robert Tauber, and Daniel Steffl, and Gerd Walz, and Michael Köttgen
July 1991, Circulation research,
Copied contents to your clipboard!