Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. 2004

Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
Center for the Study of Fetal Programming, Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071, USA.

The effect of maternal nutrient restriction on mTOR (mammalian target of rapamyosin) signaling and the ubiquitin system as well as their possible relation to growth of fetal muscle was determined. Ewes were fed to 50% (nutrient-restricted) or 100% (control-fed) of total digestible nutrients (National Research Council requirement) from Days 28 to 78 of gestation. Ewes were killed at Day 78 of gestation, and the fetal longissimus dorsi muscle was sampled for the measurement of mTOR, ribosomal protein S6, AMP-activated protein kinase (AMPK), calpastatin, and protein ubiquitylation. No difference was observed in the content of mTOR and ribosomal protein S6, but the phosphorylation of mTOR at Ser2448 and ribosomal protein S6 at Ser235/336 were reduced (P <0.05) in muscle from nutrient-restricted fetuses. Because phosphorylation of mTOR and ribosomal protein S6 up-regulates protein translation, these results show that nutrient restriction down-regulates protein synthesis in fetal muscle. No difference in AMPK activity was detected. The lack of difference in calpastatin and ubiquitylized protein content shows that nutrient restriction did not affect degradation of myofibrillar proteins in fetal muscle. Fetuses of nutrient-restricted ewes showed retarded development of muscles and skeleton. Muscle from nutrient-restricted fetuses contained fewer secondary myofibers than muscle from control fetuses, and the average area of fasciculi was smaller (P <0.05). The decreased number of secondary myofibers in nutrient-restricted fetuses may result from the decreased mTOR signaling. Lower activation of mTOR signaling in nutrient-restricted fetuses may reduce the proliferation of myoblasts and, thus, reduce the formation of secondary myofibers. This decrease in secondary myofibers in fetuses may predispose fetuses to metabolic diseases, such as diabetes and obesity, in their postnatal lives.

UI MeSH Term Description Entries
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011270 Pregnancy, Animal The process of bearing developing young (EMBRYOS or FETUSES) in utero in non-human mammals, beginning from FERTILIZATION to BIRTH. Animal Pregnancies,Animal Pregnancy,Pregnancies, Animal
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D005260 Female Females
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D005508 Food Deprivation The withholding of food in a structured experimental situation. Deprivation, Food,Deprivations, Food,Food Deprivations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000824 Animal Nutritional Physiological Phenomena Nutritional physiology of animals. Animal Nutrition Physiology,Animal Nutritional Physiology Phenomena,Animal Nutritional Physiological Phenomenon,Animal Nutritional Physiology,Animal Nutritional Physiology Phenomenon,Veterinary Nutritional Physiology,Nutrition Physiologies, Animal,Nutrition Physiology, Animal,Nutritional Physiology, Animal,Nutritional Physiology, Veterinary,Physiology, Animal Nutrition,Physiology, Animal Nutritional,Physiology, Veterinary Nutritional
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli

Related Publications

Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
January 2020, Advances in experimental medicine and biology,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
July 2020, Domestic animal endocrinology,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
May 1999, The Proceedings of the Nutrition Society,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
April 2021, Reproduction & fertility,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
January 2021, Domestic animal endocrinology,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
December 1999, The Journal of endocrinology,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
November 1991, The American journal of physiology,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
May 2008, The Journal of physiology,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
January 1983, Neuropathology and applied neurobiology,
Mei-Jun Zhu, and Stephen P Ford, and Peter W Nathanielsz, and Min Du
January 2010, Biology of reproduction,
Copied contents to your clipboard!