Intrastriatal dopamine-rich implants reverse the changes in dopamine D2 receptor densities caused by 6-hydroxydopamine lesion of the nigrostriatal pathway in rats: an autoradiographic study. 1992

M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
INSERM U.318, LAPSEN, CHU de Grenoble, France.

The aim of the present study was to test whether intrastriatal implants of embryonic dopaminergic neurons are able to normalize the lesion-induced hypersensitivity of striatal dopaminergic receptors. The ascending dopaminergic pathway of adult rats was unilaterally lesioned using 6-hydroxydopamine. Three weeks later a cell suspension obtained from the mesencephali of ED 14 rat embryos was implanted into the denervated striatum. Rotational responses to dopaminergic agonists were tested five months after implantation. One month later animals were killed and striatal dopaminergic receptor densities were quantified using autoradiography, the dopaminergic reinnervation of the host striatum being visualized with [3H]GBR 12935, a ligand labelling dopamine uptake sites. The lesion induced a behavioural hypersensitivity to dopaminergic agonists and lesioned animals displayed a strong rotation contralateral to the lesion in response to a test dose of the D1 agonist compound SKF 38393 (2.5 mg/kg) or of the D2 agonist LY 171555 (0.15 mg/kg). These responses were completely abolished by the graft. The normal distribution of D1 and D2 dopaminergic receptors in the rat striatum was similar to that described previously. Seven months after the lesion of the nigrostriatal dopaminergic pathway, the density of D1 receptors was not significantly affected while the density of D2 receptors was increased by about 25-50%. The implantation of embryonic dopaminergic neurons into the denervated striatum led to a slight decrease of D1 receptor densities and to a reversal of the lesion-induced increase of striatal dopaminergic D2 receptors six months later. Moreover, this reversal concerned not only the reinnervated striatal region but also extended into non-reinnervated areas of the striatum. It is concluded that grafts of embryonic dopaminergic neurons can normalize the density of dopaminergic D2 receptors.

UI MeSH Term Description Entries
D008297 Male Males
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography

Related Publications

M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
January 1998, Life sciences,
M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
February 1991, Brain research bulletin,
M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
January 1990, Progress in clinical and biological research,
M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
August 1995, Neuroscience,
M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
February 1976, European journal of pharmacology,
M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
August 1998, Experimental neurology,
M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
July 2001, The European journal of neuroscience,
M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
January 1976, Pharmacology & therapeutics. Part B: General & systematic pharmacology,
M Savasta, and F Mennicken, and M Chritin, and D N Abrous, and C Feuerstein, and M Le Moal, and J P Herman
June 2000, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!