Cryoelectron microscopic visualization of functional subassemblies of the bacteriophage T4 DNA replication complex. 1992

E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
Institute of Molecular Biology, University of Oregon, Eugene 97403.

A specific complex of proteins involved in bacteriophage T4 replication has been visualized by cryoelectron microscopy as distinctive structures in association with DNA. Formation of these structures, which we term "hash-marks" for their characteristic appearance in association with DNA, requires the presence of the T4 polymerase accessory proteins (the products of T4 genes 44, 45 and 62), ATP and appropriate DNA cofactors. ATP hydrolysis by the DNA-stimulated ATPase activity of the accessory proteins is required for visualization of the hash-mark structures. If ATP hydrolysis is stopped by chelation of Mg2+, by dilution with a non-hydrolyzable ATP analogue, or by exhaustion of the ATP supply, the DNA-associated structures disappear within seconds to minutes, indicating that they have a finite and relatively short lifetime. The labile nature of the structures makes their study by more conventional methods of electron microscopy, as well as by most other structural approaches, difficult if not impossible. Addition of T4 gene 32 protein increases the number of hash-mark structures, as well as increasing the rate of ATP hydrolysis. Using plasmid DNA in either a native (supercoiled) or enzymatically modified state, we have shown that nicked or gapped DNA is required as a cofactor for hash-mark formation. Stimulation of the ATPase activity of the accessory proteins has a similar cofactor requirement. These conditions for the formation and visualization of the structures parallel those required for the action of these complexes in promoting the enzymatic activity of the T4 DNA polymerase, as well as the transcription of late T4 genes. Substructure in the hash-marks has been examined by image analysis, which reveals a variation in the projected density of the subunits comprising the structures. The three-dimensional size of the hash-marks, modeled as a solid ellipsoid, is consistent with that of the gene 44/62 protein subcomplex. Density variations suggest an arrangement of subunits, either tetragonal or trigonal, viewed from a variety of angles about the DNA axis. The hash-mark structures often appear in clusters, even in DNA that has a single nick. We interpret this distribution as the result of one-dimensional translocation of the hash-marks along the DNA after their ATP-dependent initial association with, and injection into, the DNA at nicks or gaps.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004279 DNA, Viral Deoxyribonucleic acid that makes up the genetic material of viruses. Viral DNA
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D013604 T-Phages A series of 7 virulent phages which infect E. coli. The T-even phages T2, T4; (BACTERIOPHAGE T4), and T6, and the phage T5 are called "autonomously virulent" because they cause cessation of all bacterial metabolism on infection. Phages T1, T3; (BACTERIOPHAGE T3), and T7; (BACTERIOPHAGE T7) are called "dependent virulent" because they depend on continued bacterial metabolism during the lytic cycle. The T-even phages contain 5-hydroxymethylcytosine in place of ordinary cytosine in their DNA. Bacteriophages T,Coliphages T,Phages T,T Phages,T-Phage
D015925 Cryopreservation Preservation of cells, tissues, organs, or embryos by freezing. In histological preparations, cryopreservation or cryofixation is used to maintain the existing form, structure, and chemical composition of all the constituent elements of the specimens. Cryofixation,Cryonic Suspension,Cryonic Suspensions,Suspension, Cryonic

Related Publications

E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
January 1995, Methods in enzymology,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
January 1995, Methods in enzymology,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
January 1977, Molekuliarnaia biologiia,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
April 1993, Proceedings of the National Academy of Sciences of the United States of America,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
January 1968, Cold Spring Harbor symposia on quantitative biology,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
November 2017, The Journal of biological chemistry,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
June 2015, Viruses,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
July 2003, The Journal of biological chemistry,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
April 1969, Proceedings of the National Academy of Sciences of the United States of America,
E P Gogol, and M C Young, and W L Kubasek, and T C Jarvis, and P H von Hippel
May 1982, Journal of ultrastructure research,
Copied contents to your clipboard!