Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. 2004

Ye Ni, and Rachel R Chen
Chemical Engineering Department, Virginia Commonwealth University, 601 W. Main St., Richmond 23284-3028, USA.

Whole-cell biocatalysts are preferred in many biocatalysis applications. However, due to permeability barriers imposed by cell envelopes, whole-cell catalyzed reactions are reportedly 10-100-fold slower than reactions catalyzed by free enzymes. In this study, we accelerated whole-cell biocatalysis by reducing the membrane permeability barrier using molecular engineering approaches. Escherichia coli cells with genetically altered outer membrane structures were used. Specifically, a lipopolysaccarides mutant SM101 and a Braun's lipoprotein mutant E609L were used along with two model substrates that differ substantially in size and hydrophobicity, nitrocefin, and a tetrapeptide N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide. The reduction of the outer membrane permeability by genetic methods led to significant increases (up to 380%) in reaction rates of whole-cell catalyzed reactions. The magnitude of increase in biocatalysis rates was dependent on the substrates and on the nature of mutations introduced in the outer membrane structure. Notably, mutations in outer membrane can render the outer membrane completely permeable to one substrate, a barrierless condition that maximizes the reaction rate. The impact of the mutations introduced on the permeability barrier of the membranes was compared to the impact of polymixin B nonapeptide, a known potent permeabilizer acting on lipopolysaccharides. Our results suggest that genetic modifications to enhance the permeability of hydrophilic molecules should target the Lipid A region. However, strategies other than reduction of Lipid A synthesis should be considered. As we have demonstrated with tetrapeptide, membrane engineering can be much more effective in reducing a permeability barrier than are exogenous permeabilizers. This work, to our knowledge, is the first use of a molecular membrane engineering approach to address substrate permeability limitations encountered in biocatalysis applications.

UI MeSH Term Description Entries
D008050 Lipid A Lipid A is the biologically active component of lipopolysaccharides. It shows strong endotoxic activity and exhibits immunogenic properties.
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008560 Membrane Fluidity The motion of phospholipid molecules within the lipid bilayer, dependent on the classes of phospholipids present, their fatty acid composition and degree of unsaturation of the acyl chains, the cholesterol concentration, and temperature. Bilayer Fluidity,Bilayer Fluidities,Fluidities, Bilayer,Fluidities, Membrane,Fluidity, Bilayer,Fluidity, Membrane,Membrane Fluidities
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002384 Catalysis The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction. Catalyses
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002463 Cell Membrane Permeability A quality of cell membranes which permits the passage of solvents and solutes into and out of cells. Permeability, Cell Membrane
D002511 Cephalosporins A group of broad-spectrum antibiotics first isolated from the Mediterranean fungus ACREMONIUM. They contain the beta-lactam moiety thia-azabicyclo-octenecarboxylic acid also called 7-aminocephalosporanic acid. Antibiotics, Cephalosporin,Cephalosporanic Acid,Cephalosporin,Cephalosporin Antibiotic,Cephalosporanic Acids,Acid, Cephalosporanic,Acids, Cephalosporanic,Antibiotic, Cephalosporin,Cephalosporin Antibiotics
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli

Related Publications

Ye Ni, and Rachel R Chen
May 2005, Chemistry & biology,
Ye Ni, and Rachel R Chen
December 1977, The Journal of antibiotics,
Ye Ni, and Rachel R Chen
August 1985, Applied and environmental microbiology,
Ye Ni, and Rachel R Chen
December 2016, Antimicrobial agents and chemotherapy,
Ye Ni, and Rachel R Chen
April 2015, Trends in biotechnology,
Ye Ni, and Rachel R Chen
January 1985, Antibiotics and chemotherapy,
Ye Ni, and Rachel R Chen
January 1984, Annual review of microbiology,
Ye Ni, and Rachel R Chen
January 1986, Critical reviews in microbiology,
Copied contents to your clipboard!