Immunoglobulin heavy-chain and CD3 delta-chain gene enhancers are DNase I-hypersensitive in hemopoietic progenitor cells. 1992

A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
Leukaemia Research Fund Centre, Chester Beatty Laboratories, London, United Kingdom.

Multipotential interleukin 3-dependent non-immortalized murine hemopoietic progenitor cells have DNase I-hypersensitive sites in the immunoglobulin heavy-chain and CD3 delta enhancers and transcribe germ-line T-cell antigen receptor gamma-chain (TCR gamma), but not IgM or TCR beta, genes. Induction of myeloid differentiation in these cells clones down expression and/or transcriptional accessibility of the immunoglobulin heavy-chain and TCR gamma genes. The CD3 delta enhancer region remains DNase I-hypersensitive but closes down in B cells. In embryonic stem cells and pan-mesodermal cells, these genes or enhancer regions are neither expressed nor DNase I-hypersensitive. These data suggest that lineage potential may be programmed, at least in part, by alterations in the accessibility or conformation of regulatory regions of genes and that some promiscuity of gene expression and/or accessibility can precede lineage commitment and maturation in progenitor cells induced to self-renew by interleukin 3.

UI MeSH Term Description Entries
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D001853 Bone Marrow The soft tissue filling the cavities of bones. Bone marrow exists in two types, yellow and red. Yellow marrow is found in the large cavities of large bones and consists mostly of fat cells and a few primitive blood cells. Red marrow is a hematopoietic tissue and is the site of production of erythrocytes and granular leukocytes. Bone marrow is made up of a framework of connective tissue containing branching fibers with the frame being filled with marrow cells. Marrow,Red Marrow,Yellow Marrow,Marrow, Bone,Marrow, Red,Marrow, Yellow
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002461 Cell Line, Transformed Eukaryotic cell line obtained in a quiescent or stationary phase which undergoes conversion to a state of unregulated growth in culture, resembling an in vitro tumor. It occurs spontaneously or through interaction with viruses, oncogenes, radiation, or drugs/chemicals. Transformed Cell Line,Cell Lines, Transformed,Transformed Cell Lines
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003850 Deoxyribonuclease I An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA. DNase I,Streptodornase,DNA Endonuclease,DNA Nicking Enzyme,DNAase I,Dornavac,Endonuclease I,Nickase,Pancreatic DNase,T4-Endonuclease II,T7-Endonuclease I,Thymonuclease,DNase, Pancreatic,Endonuclease, DNA,T4 Endonuclease II,T7 Endonuclease I

Related Publications

A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
January 1983, Nature,
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
February 2004, The Journal of biological chemistry,
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
May 1983, Proceedings of the National Academy of Sciences of the United States of America,
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
March 1999, Journal of immunology (Baltimore, Md. : 1950),
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
November 1986, Proceedings of the National Academy of Sciences of the United States of America,
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
October 1997, The Biochemical journal,
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
August 1988, The EMBO journal,
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
October 1998, The Journal of experimental medicine,
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
September 2011, Leukemia,
A M Ford, and C A Bennett, and L E Healy, and E Navarro, and E Spooncer, and M F Greaves
February 2000, FEBS letters,
Copied contents to your clipboard!