Tolerance induction in T helper (Th1) cells by thymic macrophages. 1992

S Jayaraman, and Y Luo, and M E Dorf
Division of Clinical Virology, James N. Gamble Institute of Medical Research, Cincinnati, OH 45219.

Most macrophages in the peripheral tissues present Ag optimally to a variety of functionally distinct Th cells. Although thymic macrophages have been implicated in deleting autoreactive thymocytes, their role in influencing the functional capacities of mature T cells is not clear. We have established a normal untransformed macrophage cell line, named TMC, from the mouse thymus. The TMC line presents protein Ag to an IL-4-producing Th2 type Th clone after IFN-gamma treatment as evidence by T cell proliferation and the release of IL-3 and IL-4. However, these thymic macrophages are inefficient at stimulating a well characterized cytochrome C-specific IL-2-producing Th1 clone, A.E7. Ag presentation by TMC results in the production of IL-3 but not IL-2 production or proliferation of A.E7 cells. This selective Ag presentation defect to Th1 cells is corrected by the addition of live but not fixed allogeneic irradiated spleen cells, suggesting that the thymic macrophages lack the expression of costimulatory activity required for Th1 activation. This is further demonstrated by the failure of live thymic macrophages to provide costimulatory activity to A.E7 cells stimulated with fixed spleen cells plus the antigenic peptide 81-104. Exposure of A.E7 cells to paraformaldehyde-treated TMC in the presence of 81-104 peptide induces specific hyporesponsiveness, anergy. These data demonstrate that thymic macrophages can have a profound influence on the response of selected T cells to Ag. Furthermore, the nature of the T cell stimulus is also critical because Th1 and Th2 cells responded equally well to the T cell mitogen, Con A, and a bacterial superantigen presented by the thymic macrophages.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D007371 Interferon-gamma The major interferon produced by mitogenically or antigenically stimulated LYMPHOCYTES. It is structurally different from TYPE I INTERFERON and its major activity is immunoregulation. It has been implicated in the expression of CLASS II HISTOCOMPATIBILITY ANTIGENS in cells that do not normally produce them, leading to AUTOIMMUNE DISEASES. Interferon Type II,Interferon, Immune,gamma-Interferon,Interferon, gamma,Type II Interferon,Immune Interferon,Interferon, Type II
D007378 Interleukins Soluble factors which stimulate growth-related activities of leukocytes as well as other cell types. They enhance cell proliferation and differentiation, DNA synthesis, secretion of other biologically active molecules and responses to immune and inflammatory stimuli. Interleukin
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D008264 Macrophages The relatively long-lived phagocytic cell of mammalian tissues that are derived from blood MONOCYTES. Main types are PERITONEAL MACROPHAGES; ALVEOLAR MACROPHAGES; HISTIOCYTES; KUPFFER CELLS of the liver; and OSTEOCLASTS. They may further differentiate within chronic inflammatory lesions to EPITHELIOID CELLS or may fuse to form FOREIGN BODY GIANT CELLS or LANGHANS GIANT CELLS. (from The Dictionary of Cell Biology, Lackie and Dow, 3rd ed.) Bone Marrow-Derived Macrophages,Monocyte-Derived Macrophages,Macrophage,Macrophages, Monocyte-Derived,Bone Marrow Derived Macrophages,Bone Marrow-Derived Macrophage,Macrophage, Bone Marrow-Derived,Macrophage, Monocyte-Derived,Macrophages, Bone Marrow-Derived,Macrophages, Monocyte Derived,Monocyte Derived Macrophages,Monocyte-Derived Macrophage
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003207 Conalbumin A glycoprotein albumin from hen's egg white with strong iron-binding affinity. Ovotransferrin
D005557 Formaldehyde A highly reactive aldehyde gas formed by oxidation or incomplete combustion of hydrocarbons. In solution, it has a wide range of uses: in the manufacture of resins and textiles, as a disinfectant, and as a laboratory fixative or preservative. Formaldehyde solution (formalin) is considered a hazardous compound, and its vapor toxic. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p717) Formalin,Formol,Methanal,Oxomethane

Related Publications

S Jayaraman, and Y Luo, and M E Dorf
August 1990, Immunological investigations,
S Jayaraman, and Y Luo, and M E Dorf
March 1975, Nature,
S Jayaraman, and Y Luo, and M E Dorf
February 1984, Immunology,
S Jayaraman, and Y Luo, and M E Dorf
June 1996, The Journal of experimental medicine,
S Jayaraman, and Y Luo, and M E Dorf
December 2014, Journal of autoimmunity,
S Jayaraman, and Y Luo, and M E Dorf
April 1992, Proceedings of the National Academy of Sciences of the United States of America,
S Jayaraman, and Y Luo, and M E Dorf
June 2016, American journal of respiratory and critical care medicine,
S Jayaraman, and Y Luo, and M E Dorf
March 1988, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!