The binding of a second divalent metal ion is necessary for the activation of ATP hydrolysis and its inhibition by tightly bound ADP in the ATPase from Halobacterium saccharovorum. 1992

B Schobert
Department of Physiology and Biophysics, University of California, Irvine 92717.

A binding site for divalent metal ions on the ATPase from Halobacterium saccharovorum is proposed. This site is different from the catalytic site which binds ATP and a complexed divalent metal ion. Occupation of the second site greatly stimulates the rate of ATP hydrolysis and the affinity of the catalytic site for the metal ion-ATP complex. The time-dependent inhibition of the ATPase, which occurs during catalysis and which is known to be caused by the retention of ADP, is also dependent on the occupation of this metal ion binding site. The binding of the metal ion apparently induces extremely tight binding of ADP after the departure of Pi. Mg2+, Mn2+, Zn2+, Co2+, and Ca2+ were tested and showed both the activating and the inhibitory effects, although their binding constants for ATP and the second metal ion binding site were quite different. The characteristic shapes of the nonlinear ATP hydrolysis curves obtained with different metal ions, and different ratios of metal ion and ATP, could be explained with the established dissociation constants. On this basis, a model for the ATPase was developed with two catalytic cycles: one in which the second metal ion binding site is occupied, and another in which it is empty. These pathways are connected by metal ion-dependent equilibria.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008670 Metals Electropositive chemical elements characterized by ductility, malleability, luster, and conductance of heat and electricity. They can replace the hydrogen of an acid and form bases with hydroxyl radicals. (Grant & Hackh's Chemical Dictionary, 5th ed) Metal
D002413 Cations, Divalent Positively charged atoms, radicals or groups of atoms with a valence of plus 2, which travel to the cathode or negative pole during electrolysis. Divalent Cations
D006217 Halobacterium A genus of HALOBACTERIACEAE whose growth requires a high concentration of salt. Binary fission is by constriction.
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

B Schobert
January 1991, Archives of biochemistry and biophysics,
B Schobert
August 1978, Biochemical and biophysical research communications,
B Schobert
October 1985, The Journal of biological chemistry,
Copied contents to your clipboard!