Modifications of the gamma subunit of chloroplast coupling factor 1 alter interactions with the inhibitory epsilon subunit. 1992

P Soteropoulos, and K H Süss, and R E McCarty
Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853.

The treatment of chloroplast coupling factor 1 (CF1) with dithiothreitol or with trypsin modifies the gamma subunit. Reduction of the gamma subunit disulfide bond in CF1 in solution with dithiothreitol enhances the dissociation of epsilon (Duhe, R. J., and Selman, B. R. (1990) Biochim. Biophys. Acta 1017, 70-78). The Ca(2+)-ATPase activity of either oxidized or reduced CF1 increases as the enzyme is diluted. Added epsilon subunit inhibits the Ca(2+)-ATPase activity of both forms of the diluted CF1, suggesting that epsilon dissociation is the cause of activation by dilution. Half-maximal activation occurred at much higher concentrations of the reduced CF1, indicating that reduction decreases the affinity for epsilon about 20-fold. Immunoblotting techniques show that there is only one epsilon subunit/CF1 in intact chloroplasts, in thylakoid membranes, and in solution. No epsilon is released from CF1 in thylakoids under conditions of ATP synthesis. The gamma subunit of CF1 in illuminated thylakoids is specifically cleaved by trypsin. CF1 purified from thylakoids treated with trypsin in the light is deficient in epsilon subunit, and has a high rate of ATP hydrolysis. Added epsilon neither inhibits the ATPase activity of, nor binds tightly to the cleaved enzyme.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009995 Osmosis Tendency of fluids (e.g., water) to move from the less concentrated to the more concentrated side of a semipermeable membrane. Osmoses
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006180 Proton-Translocating ATPases Multisubunit enzymes that reversibly synthesize ADENOSINE TRIPHOSPHATE. They are coupled to the transport of protons across a membrane. ATP Dependent Proton Translocase,ATPase, F0,ATPase, F1,Adenosinetriphosphatase F1,F(1)F(0)-ATPase,F1 ATPase,H(+)-Transporting ATP Synthase,H(+)-Transporting ATPase,H(+)ATPase Complex,Proton-Translocating ATPase,Proton-Translocating ATPase Complex,Proton-Translocating ATPase Complexes,ATPase, F(1)F(0),ATPase, F0F1,ATPase, H(+),Adenosine Triphosphatase Complex,F(0)F(1)-ATP Synthase,F-0-ATPase,F-1-ATPase,F0F1 ATPase,F1-ATPase,F1F0 ATPase Complex,H(+)-ATPase,H(+)-Transporting ATP Synthase, Acyl-Phosphate-Linked,H+ ATPase,H+ Transporting ATP Synthase,H+-Translocating ATPase,Proton-Translocating ATPase, F0 Sector,Proton-Translocating ATPase, F1 Sector,ATPase Complex, Proton-Translocating,ATPase Complexes, Proton-Translocating,ATPase, H+,ATPase, H+-Translocating,ATPase, Proton-Translocating,Complex, Adenosine Triphosphatase,Complexes, Proton-Translocating ATPase,F 0 ATPase,F 1 ATPase,F0 ATPase,H+ Translocating ATPase,Proton Translocating ATPase,Proton Translocating ATPase Complex,Proton Translocating ATPase Complexes,Proton Translocating ATPase, F0 Sector,Proton Translocating ATPase, F1 Sector,Triphosphatase Complex, Adenosine
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D000252 Calcium-Transporting ATPases Cation-transporting proteins that utilize the energy of ATP hydrolysis for the transport of CALCIUM. They differ from CALCIUM CHANNELS which allow calcium to pass through a membrane without the use of energy. ATPase, Calcium,Adenosinetriphosphatase, Calcium,Ca(2+)-Transporting ATPase,Calcium ATPase,Calcium Adenosinetriphosphatase,Adenosine Triphosphatase, Calcium,Ca2+ ATPase,Calcium-ATPase,ATPase, Ca2+,ATPases, Calcium-Transporting,Calcium Adenosine Triphosphatase,Calcium Transporting ATPases,Triphosphatase, Calcium Adenosine

Related Publications

P Soteropoulos, and K H Süss, and R E McCarty
June 1984, The Journal of biological chemistry,
P Soteropoulos, and K H Süss, and R E McCarty
May 1990, Biochimica et biophysica acta,
P Soteropoulos, and K H Süss, and R E McCarty
August 1994, The Journal of biological chemistry,
P Soteropoulos, and K H Süss, and R E McCarty
April 1996, Biochemistry,
P Soteropoulos, and K H Süss, and R E McCarty
January 2004, Photosynthesis research,
P Soteropoulos, and K H Süss, and R E McCarty
January 1996, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica,
P Soteropoulos, and K H Süss, and R E McCarty
October 1988, The Journal of biological chemistry,
Copied contents to your clipboard!