PCR-RFLP genotyping assay for a lactase persistence polymorphism upstream of the lactase-phlorizin hydrolase gene. 2004

Christina K Chao, and Eric Sibley
Department of Pediatrics, Stanford University Medical Center, Stanford, CA 94305, USA.

The majority of the world's human population experiences a decline of lactase gene expression during maturation, so-called lactase nonpersistence. Thus, adults with lactase nonpersistence are susceptible to developing symptoms of lactose intolerance. By contrast, lactase persistence is an autosomal dominant heritable condition that results in a high level of lactase gene expression throughout adulthood and sustained lactose tolerance. Lactase persistence has recently been correlated with a single nucleotide genetic variant (a C --> T mutation) located 13,910 bases upstream from the lactase structural gene. We aimed to develop a restriction fragment length polymorphism (RFLP) method of detecting the C/T variants as a means of identifying individuals genetically inclined toward lactase persistence or nonpersistence. Genomic DNA in a 210-bp region surrounding the -13,910-bp variant site was PCR amplified with unique primers designed to avoid or mutate adjacent restriction sites. The amplified DNA was digested with a restriction enzyme, CviJI, that recognizes the base pair sequence generated by the lactase nonpersistence variant. Restriction digest gel analysis yielded DNA fragments of the expected diagnostic molecular weight sizes for individuals that were homozygote or heterozygote for the lactase persistence and nonpersistence variants. The genotypes predicted by the RFLP-based method were confirmed by DNA sequence analysis. The RFLP-based method provides a quick and noninvasive means of molecular detection of the presence or absence of the lactase persistence variant.

UI MeSH Term Description Entries
D007787 Lactose Intolerance The condition resulting from the absence or deficiency of LACTASE in the MUCOSA cells of the GASTROINTESTINAL TRACT, and the inability to break down LACTOSE in milk for ABSORPTION. Bacterial fermentation of the unabsorbed lactose leads to symptoms that range from a mild indigestion (DYSPEPSIA) to severe DIARRHEA. Lactose intolerance may be an inborn error or acquired. Lactose Malabsorption,Alactasia,Dairy Product Intolerance,Hypolactasia,Milk Sugar Intolerance,Intolerance, Lactose,Malabsorption, Lactose
D010694 Lactase-Phlorizin Hydrolase A multifunctional protein that contains two enzyme domains. The first domain (EC 3.2.1.62) hydrolyzes glycosyl-N-acylsphingosine to a sugar and N-acylsphingosine. The second domain (EC 3.2.1.108) hydrolyzes LACTOSE and is found in the intestinal brush border membrane. Loss of activity for this enzyme in humans results in LACTOSE INTOLERANCE. Glycosylceramidase,Phloretin-Glucosidase,Phlorizin Hydrolase,Glycosyl Ceramidase,Lactase-Glycosylceramidase,Ceramidase, Glycosyl,Hydrolase, Lactase-Phlorizin,Hydrolase, Phlorizin,Lactase Glycosylceramidase,Lactase Phlorizin Hydrolase,Phloretin Glucosidase
D011110 Polymorphism, Genetic The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level. Gene Polymorphism,Genetic Polymorphism,Polymorphism (Genetics),Genetic Polymorphisms,Gene Polymorphisms,Polymorphism, Gene,Polymorphisms (Genetics),Polymorphisms, Gene,Polymorphisms, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain
D043322 Lactase An enzyme which catalyzes the hydrolysis of LACTOSE to D-GALACTOSE and D-GLUCOSE. Defects in the enzyme cause LACTOSE INTOLERANCE. Lactose Galactohydrolase,Galactohydrolase, Lactose
D020641 Polymorphism, Single Nucleotide A single nucleotide variation in a genetic sequence that occurs at appreciable frequency in the population. SNPs,Single Nucleotide Polymorphism,Nucleotide Polymorphism, Single,Nucleotide Polymorphisms, Single,Polymorphisms, Single Nucleotide,Single Nucleotide Polymorphisms

Related Publications

Christina K Chao, and Eric Sibley
January 2001, Genetic testing,
Christina K Chao, and Eric Sibley
August 1995, The Journal of biological chemistry,
Christina K Chao, and Eric Sibley
September 1982, Biochimica et biophysica acta,
Christina K Chao, and Eric Sibley
May 1974, Biochimica et biophysica acta,
Christina K Chao, and Eric Sibley
February 1995, Animal genetics,
Christina K Chao, and Eric Sibley
November 1988, FEBS letters,
Christina K Chao, and Eric Sibley
July 1993, Gastroenterology,
Christina K Chao, and Eric Sibley
September 2010, Scandinavian journal of clinical and laboratory investigation,
Copied contents to your clipboard!