Gefitinib reverses breast cancer resistance protein-mediated drug resistance. 2004

Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, 1-37-1 Kami-Ikebukuro, Toshima-ku, Tokyo 170-8455, Japan.

Breast cancer resistance protein (BCRP) is an ATP binding cassette transporter that confers resistance to a series of anticancer agents such as 7-ethyl-10-hydroxycamptothecin (SN-38), topotecan, and mitoxantrone. In this study, we evaluated the possible interaction of gefitinib, a selective epidermal growth factor receptor tyrosine kinase inhibitor, with BCRP. BCRP-transduced human epidermoid carcinoma A431 (A431/BCRP) cells acquired cellular resistance to gefitinib, suggesting that BCRP could be one of the determinants of gefitinib sensitivity in a certain sort of cells. Next, the effect of gefitinib on BCRP-mediated drug resistance was examined. Gefitinib reversed SN-38 resistance in BCRP-transduced human myelogenous leukemia K562 (K562/BCRP) or BCRP-transduced murine lymphocytic leukemia P388 (P388/BCRP) cells but not in these parental cells. In addition, gefitinib sensitized human colon cancer HT-29 cells, which endogenously express BCRP, to SN-38. Gefitinib increased intracellular accumulation of topotecan in K562/BCRP cells and suppressed ATP-dependent transport of estrone 3-sulfate, a substrate of BCRP, in membrane vesicles from K562/BCRP cells. These results suggest that gefitinib may overcome BCRP-mediated drug resistance by inhibiting the pump function of BCRP. Furthermore, P388/BCRP-transplanted mice treated with combination of irinotecan and gefitinib survived significantly longer than those treated with irinotecan alone or gefitinib alone. In conclusion, gefitinib is shown to interact with BCRP. BCRP expression in a certain sort of cells is supposed to be one of the determinants of gefitinib sensitivity. Gefitinib inhibits the transporter function of BCRP and reverses BCRP-mediated drug resistance both in vitro and in vivo.

UI MeSH Term Description Entries
D009363 Neoplasm Proteins Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. Proteins, Neoplasm
D011799 Quinazolines A group of aromatic heterocyclic compounds that contain a bicyclic structure with two fused six-membered aromatic rings, a benzene ring and a pyrimidine ring. Quinazoline
D002166 Camptothecin An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecine
D004970 Estrone An aromatized C18 steroid with a 3-hydroxyl group and a 17-ketone, a major mammalian estrogen. It is converted from ANDROSTENEDIONE directly, or from TESTOSTERONE via ESTRADIOL. In humans, it is produced primarily by the cyclic ovaries, PLACENTA, and the ADIPOSE TISSUE of men and postmenopausal women. Folliculin (Hormone),Estrone, (+-)-Isomer,Estrone, (8 alpha)-Isomer,Estrone, (9 beta)-Isomer,Estrovarin,Kestrone,Unigen,Wehgen
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000070997 ATP Binding Cassette Transporter, Subfamily G, Member 2 ATP-binding cassette transporter, sub-family G protein that functions as a high capacity UREA exporter, transporter of STEROLS, and in the absorption and efflux of many drugs. Its efflux activity for ANTINEOPLASTIC AGENTS contributes to DRUG RESISTANCE. It functions as a homodimer and is expressed by cells in a variety of organs, as well as by NEOPLASTIC STEM CELLS. ABCG2 Protein,ABCG2 Transporter,ATP Binding Cassette Transporter, Sub-Family G, Member 2,CD338 Antigen
D000077146 Irinotecan A semisynthetic camptothecin derivative that inhibits DNA TOPOISOMERASE I to prevent nucleic acid synthesis during S PHASE. It is used as an antineoplastic agent for the treatment of COLORECTAL NEOPLASMS and PANCREATIC NEOPLASMS. 7-Ethyl-10-hydroxycamptothecin,CPT 11,CPT-11,Camptosar,Camptothecin-11,Irinotecan Hydrochloride,Irrinotecan,NK012 Compound,SN 38,SN 38 11,SN-38,SN-38-11,7 Ethyl 10 hydroxycamptothecin,CPT11,Camptothecin 11,SN3811
D000077156 Gefitinib A selective tyrosine kinase inhibitor for the EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) that is used for the treatment of locally advanced or metastatic NON-SMALL CELL LUNG CANCER. Iressa,N-(3-Chloro-4-fluorophenyl)-7-methoxy-6-(3-(4-morpholinyl)propoxy)-4-quinazolinamide,ZD 1839,ZD1839
D000970 Antineoplastic Agents Substances that inhibit or prevent the proliferation of NEOPLASMS. Anticancer Agent,Antineoplastic,Antineoplastic Agent,Antineoplastic Drug,Antitumor Agent,Antitumor Drug,Cancer Chemotherapy Agent,Cancer Chemotherapy Drug,Anticancer Agents,Antineoplastic Drugs,Antineoplastics,Antitumor Agents,Antitumor Drugs,Cancer Chemotherapy Agents,Cancer Chemotherapy Drugs,Chemotherapeutic Anticancer Agents,Chemotherapeutic Anticancer Drug,Agent, Anticancer,Agent, Antineoplastic,Agent, Antitumor,Agent, Cancer Chemotherapy,Agents, Anticancer,Agents, Antineoplastic,Agents, Antitumor,Agents, Cancer Chemotherapy,Agents, Chemotherapeutic Anticancer,Chemotherapy Agent, Cancer,Chemotherapy Agents, Cancer,Chemotherapy Drug, Cancer,Chemotherapy Drugs, Cancer,Drug, Antineoplastic,Drug, Antitumor,Drug, Cancer Chemotherapy,Drug, Chemotherapeutic Anticancer,Drugs, Antineoplastic,Drugs, Antitumor,Drugs, Cancer Chemotherapy
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic

Related Publications

Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
February 2005, Cancer research,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
July 2011, Biochemical pharmacology,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
July 2017, Oncotarget,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
August 2005, Cancer research,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
December 2003, International journal of cancer,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
March 2023, Heliyon,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
July 2019, Human cell,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
March 2024, Phytotherapy research : PTR,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
August 2011, Clinical epigenetics,
Kae Yanase, and Satomi Tsukahara, and Sakiyo Asada, and Etsuko Ishikawa, and Yasuo Imai, and Yoshikazu Sugimoto
August 2021, Zhongguo fei ai za zhi = Chinese journal of lung cancer,
Copied contents to your clipboard!