The somatostatin receptor (sst1) modulates the release of somatostatin in the nucleus accumbens of the rat. 2004

Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
Laboratory of Pharmacology, Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, 71110 Crete, Greece.

The aim of the present study was to examine the function of the somatostatin receptor (sst(1)) in the nucleus accumbens (NAc) of the basal ganglia. Radioligand binding studies were performed in rats to assess the presence of the receptor, while in vivo microdialysis studies were performed to examine its role in somatostatin release. CH-275, which is selective for sst(1), MK-678, selective for sst(2) and L-803,087, selective for sst(4) receptors displaced [(125)I]-Tyr(11)-somatostatin specific binding in a concentration-dependent manner with IC(50) values of 75, 0.21 and 11 nM, respectively. Infusion of CH-275 (10(-5), 10(-6) or 10(-7) M) in the NAc of freely moving rats resulted in a decrease in somatostatin levels only at the concentration of 10(-5) M. This effect was reversed by 10(-5) M of the selective sst(1) antagonist SRA-880. The sst(1) agonist L-797,591 (10(-5) M) mimicked the effect of CH-275, while MK-678 and L-803,087 at the same concentration were unable to influence somatostatin levels. These results provide functional evidence to demonstrate that the sst(1) receptor modulates somatostatin release in the basal ganglia.

UI MeSH Term Description Entries
D008297 Male Males
D009281 Naphthalenes Two-ring crystalline hydrocarbons isolated from coal tar. They are used as intermediates in chemical synthesis, as insect repellents, fungicides, lubricants, preservatives, and, formerly, as topical antiseptics.
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017481 Receptors, Somatostatin Cell surface proteins that bind somatostatin and trigger intracellular changes which influence the behavior of cells. Somatostatin is a hypothalamic hormone, a pancreatic hormone, and a central and peripheral neurotransmitter. Activated somatostatin receptors on pituitary cells inhibit the release of growth hormone; those on endocrine and gastrointestinal cells regulate the absorption and utilization of nutrients; and those on neurons mediate somatostatin's role as a neurotransmitter. Receptors, Somatotropin Release Inhibiting Hormone,Somatostatin Receptors,Receptors, SRIH,SRIH Receptors,Somatostatin Receptor,Receptor, Somatostatin

Related Publications

Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
February 2004, Neuroscience letters,
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
February 2006, Neuroscience letters,
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
September 1999, Investigative ophthalmology & visual science,
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
February 1998, Brain research,
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
November 2002, Synapse (New York, N.Y.),
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
June 2006, Pharmacology & therapeutics,
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
January 2006, Neuroscience letters,
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
June 2001, Journal of medicinal chemistry,
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
June 2021, Neurochemical research,
Anna Vasilaki, and Despina Papasava, and Daniel Hoyer, and Kyriaki Thermos
June 2000, Pharmacology, biochemistry, and behavior,
Copied contents to your clipboard!