Conversion of the noncooperative Bacillus subtilis aspartate transcarbamoylase into a cooperative enzyme by a single amino acid substitution. 1992

J W Stebbins, and E R Kantrowitz
Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02167.

Allosteric enzymes are part of a unique class of enzymes which regulate metabolic pathways. On the molecular level, allosteric regulation is the result of interactions between discrete binding sites on the enzyme. In order to accommodate these multiple binding sites, allosteric enzymes have evolved with oligomeric quaternary structures. However, only a few oligomeric enzymes are known to have regulatory interactions between binding sites. Is regulatory activity an inherent property of oligomeric enzymes? The trimeric Bacillus subtilis aspartate transcarbamoylase catalyzes the first committed step of the pyrimidine biosynthetic pathway and is not known to be a regulatory enzyme. When an alanine residue is substituted for the active-site residue Arg-99 by site-specific mutagenesis, the regulatory activity of homotropic substrate cooperativity (Hill coefficient of 1.5) is observed in the resulting mutant enzyme. These results suggest that homotropic regulation may have evolved by a relatively small number of mutations to an oligomeric enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000409 Alanine A non-essential amino acid that occurs in high levels in its free state in plasma. It is produced from pyruvate by transamination. It is involved in sugar and acid metabolism, increases IMMUNITY, and provides energy for muscle tissue, BRAIN, and the CENTRAL NERVOUS SYSTEM. Abufène,Alanine, L-Isomer,L-Alanine,Alanine, L Isomer,L Alanine,L-Isomer Alanine
D000494 Allosteric Regulation The modification of the reactivity of ENZYMES by the binding of effectors to sites (ALLOSTERIC SITES) on the enzymes other than the substrate BINDING SITES. Regulation, Allosteric,Allosteric Regulations,Regulations, Allosteric
D000495 Allosteric Site A site on an enzyme which upon binding of a modulator, causes the enzyme to undergo a conformational change that may alter its catalytic or binding properties. Allosteric Sites,Site, Allosteric,Sites, Allosteric
D001120 Arginine An essential amino acid that is physiologically active in the L-form. Arginine Hydrochloride,Arginine, L-Isomer,DL-Arginine Acetate, Monohydrate,L-Arginine,Arginine, L Isomer,DL Arginine Acetate, Monohydrate,Hydrochloride, Arginine,L Arginine,L-Isomer Arginine,Monohydrate DL-Arginine Acetate
D001221 Aspartate Carbamoyltransferase An enzyme that catalyzes the conversion of carbamoyl phosphate and L-aspartate to yield orthophosphate and N-carbamoyl-L-aspartate. (From Enzyme Nomenclature, 1992) EC 2.1.3.2. Aspartate Transcarbamylase,Co(II)-Aspartate Transcarbamoylase,Ni(II)-Aspartate Transcarbamoylase,Carbamoyltransferase, Aspartate,Transcarbamylase, Aspartate
D001412 Bacillus subtilis A species of gram-positive bacteria that is a common soil and water saprophyte. Natto Bacteria,Bacillus subtilis (natto),Bacillus subtilis subsp. natto,Bacillus subtilis var. natto
D016297 Mutagenesis, Site-Directed Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion. Mutagenesis, Oligonucleotide-Directed,Mutagenesis, Site-Specific,Oligonucleotide-Directed Mutagenesis,Site-Directed Mutagenesis,Site-Specific Mutagenesis,Mutageneses, Oligonucleotide-Directed,Mutageneses, Site-Directed,Mutageneses, Site-Specific,Mutagenesis, Oligonucleotide Directed,Mutagenesis, Site Directed,Mutagenesis, Site Specific,Oligonucleotide Directed Mutagenesis,Oligonucleotide-Directed Mutageneses,Site Directed Mutagenesis,Site Specific Mutagenesis,Site-Directed Mutageneses,Site-Specific Mutageneses

Related Publications

J W Stebbins, and E R Kantrowitz
August 1997, The Journal of biological chemistry,
J W Stebbins, and E R Kantrowitz
July 1991, Proceedings of the National Academy of Sciences of the United States of America,
J W Stebbins, and E R Kantrowitz
October 1995, Protein expression and purification,
J W Stebbins, and E R Kantrowitz
May 2000, The Journal of biological chemistry,
J W Stebbins, and E R Kantrowitz
November 1967, Journal of bacteriology,
J W Stebbins, and E R Kantrowitz
September 2010, Biochemistry,
Copied contents to your clipboard!