The archaebacterial hypusine-containing protein. Structural features suggest common ancestry with eukaryotic translation initiation factor 5A. 1992

D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
Biochemisches Institut, Universität Kiel, Federal Republic of Germany.

The amino acid hypusine is formed by post-translational modification of a lysine residue in eukaryotes and archaebacteria but up to now only the eukaryotic translation initiation factor eIF-5A has been known to contain this unique component. We isolated and purified a hypusine-containing protein from the thermophilic archaebacterium Sulfolobus acidocaldarius. The mainly cytosolic protein comprised about 0.03% of the post-ribosomal supernatant protein. No other hypusine-containing protein could be detected in S. acidocaldarius. The molar ratio of hypusine/hypusine-containing protein was 1:1. SDS/PAGE showed a molecular mass of 16.8 kDa; a pI of 7.8 for the native protein resulted from IEF. The N-terminus was blocked. Four cyanogen bromide fragments were partially sequenced and used to derive two 17-base oligonucleotide probes. A 3-kb HindIII fragment of genomic DNA hybridizing with both probes was cloned. By sequencing of exonuclease III deletion clones an open reading frame of 405 nucleotides was found coding for a protein of 135 amino acids with a molecular mass of 15 kDa. It contained all cyanogen bromide sequences analysed. Sequence alignment revealed that seven of eight residues around Lys40 in the Sulfolobus hypusine-containing protein were identical to the nonapeptides centered by hypusine in the three eIF-5A proteins sequenced so far. The Edman procedure gave no phenylthiohydantoin derivative for this position. For a central region of 44 residues a sequence similarity of 54% between the archaebacterial and eukaryotic proteins was calculated; for the total sequence about 33% similarity resulted. In addition, there were a number of conservative changes. The unique lysine modification surrounded by a conserved sequence strongly suggests a common ancestry of archaebacterial hypusine-containing protein and eIF-5A. Together with similarities in molecular mass and intracellular localization, it may point to an analogous biochemical function.

UI MeSH Term Description Entries
D007202 Indicators and Reagents Substances used for the detection, identification, analysis, etc. of chemical, biological, or pathologic processes or conditions. Indicators are substances that change in physical appearance, e.g., color, at or approaching the endpoint of a chemical titration, e.g., on the passage between acidity and alkalinity. Reagents are substances used for the detection or determination of another substance by chemical or microscopical means, especially analysis. Types of reagents are precipitants, solvents, oxidizers, reducers, fluxes, and colorimetric reagents. (From Grant & Hackh's Chemical Dictionary, 5th ed, p301, p499) Indicator,Reagent,Reagents,Indicators,Reagents and Indicators
D007525 Isoelectric Focusing Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point. Electrofocusing,Focusing, Isoelectric
D008239 Lysine An essential amino acid. It is often added to animal feed. Enisyl,L-Lysine,Lysine Acetate,Lysine Hydrochloride,Acetate, Lysine,L Lysine
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010448 Peptide Initiation Factors Protein factors uniquely required during the initiation phase of protein synthesis in GENETIC TRANSLATION. Initiation Factors,Initiation Factor,Factors, Peptide Initiation,Initiation Factors, Peptide
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D003979 Diazonium Compounds Azo compounds consisting of an aryl or alkyl group that is joined through two nitrogen atoms to an anion (R-N2+X-). Compounds, Diazonium

Related Publications

D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
February 1991, Biochimica et biophysica acta,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
July 1993, The Journal of biological chemistry,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
February 2009, The FEBS journal,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
November 1994, Proceedings of the National Academy of Sciences of the United States of America,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
January 2002, Journal of cellular biochemistry,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
February 1992, Nucleic acids research,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
January 1997, Biological signals,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
April 1984, The Journal of biological chemistry,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
December 1987, The Journal of biological chemistry,
D Bartig, and K Lemkemeier, and J Frank, and F Lottspeich, and F Klink
February 2006, Journal of biochemistry,
Copied contents to your clipboard!