Molecular characterization of six intermediate proteins in the processing of mouse protamine P2 precursor. 1992

M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
Laboratoire de Biologie Cellulaire, Université Paris-Val de Marne, Créteil, France.

In mouse spermatozoa, DNA is compacted by two protamines mP1 and mP2. Protamine mP2 (63 residues) is synthesized in spermatid nuclei as a precursor pmP2 (106 residues) which is subsequently processed at the end of spermiogenesis [Yelick, P.C., Balhorn, R., Johnson, P.A., Corzett, M., Mazrimas, J.A., Kleene, K.C. & Hecht, N.B. (1987) Mol. Cell. Biol. 7, 2173-2179]. Six proteins, three of which were described earlier [Chauvière, M., Martinage, A., Debarle, M., Alimi, E., Sautière, P. & Chevaillier, Ph. (1991) C.R. Acad. Sci. 313, 107-112], have molecular and electrophoretic properties similar to those of pmP2. They were isolated from purified testis nuclei and characterized by amino acid composition, N-terminal sequence and peptide mapping. From the amino acid compositions, it appears that all six proteins are rich in arginine, cysteine and histidine and are closely related to pmP2 and mP2. The N-terminal sequence of each protein overlaps a distinct region of the N-terminal part of pmP2. The C-terminal part of protamine mP2 starting at arginine 15 is common to all proteins as assessed by amino acid compositions and peptide maps. All these structural data demonstrate that the six isolated proteins are products of pmP2 precursor processing. The six intermediate proteins pmP2/5, pmP2/11, pmP2/16, pmP2/20, pmP2/26 and pmP2/32 which contain 102, 96, 91, 87, 81 and 75 residues, respectively, are generated from the pmP2 precursor after N-terminal excision of 4, 10, 15, 19, 25 and 31 residues, respectively. The C-terminal sequence of protamine mP2 is strictly identical to that of its precursor; therefore, no maturation occurs in this part of the molecule. At the present time, the proteolytic pathway involved in the amino-terminal processing leading to the mature form of the protamine mP2 (63 residues) has not been elucidated. However, the different representation of six intermediates in the testis suggests that some stages of processing are faster than others or that some cleavage sites are preferred. The proteins described in this paper could result either from stepwise excision of N-terminal residues or from non-sequential cleavages.

UI MeSH Term Description Entries
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D011479 Protamines A group of simple proteins that yield basic amino acids on hydrolysis and that occur combined with nucleic acid in the sperm of fish. Protamines contain very few kinds of amino acids. Protamine sulfate combines with heparin to form a stable inactive complex; it is used to neutralize the anticoagulant action of heparin in the treatment of heparin overdose. (From Merck Index, 11th ed; Martindale, The Extra Pharmacopoeia, 30th ed, p692) Protamine,Protamine Sulfate,Protamine Chloride,Chloride, Protamine,Sulfate, Protamine
D011498 Protein Precursors Precursors, Protein
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino

Related Publications

M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
July 1991, The Biochemical journal,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
February 1991, European journal of biochemistry,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
December 1992, Molecular reproduction and development,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
June 1987, Molecular and cellular biology,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
January 1991, Biomedica biochimica acta,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
September 1987, Biology of reproduction,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
December 1989, Archives of biochemistry and biophysics,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
June 1989, Molecular and cellular biology,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
December 1993, European journal of biochemistry,
M Chauvière, and A Martinage, and M Debarle, and P Sautière, and P Chevaillier
May 1993, The Journal of biological chemistry,
Copied contents to your clipboard!