Internucleosomal DNA fragmentation during phorbol ester-induced monocytic differentiation and G0/G1 arrest. 1992

H Gunji, and R Hass, and D Kufe
Laboratory of Clinical Pharmacology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115.

The treatment of human myeloid leukemia cell lines with phorbol esters, such as 12-O-tetradecanoylphorbol-13-acetate (TPA), is associated with loss of proliferative capacity and induction of monocytic differentiation. The present results demonstrate that treatment of asynchronous human U-937 leukemia cells with 10 nM TPA is also associated with oligonucleosomal DNA cleavage. This pattern of DNA fragmentation, which is observed in programmed cell death, was detectable in populations of TPA-treated cells that had entered a nonproliferative G0/G1 phase. Similar findings were obtained after TPA treatment of a synchronous population of G1 cells. These cells progressed through S and G2/M phases before undergoing internucleosomal DNA cleavage during G0/G1 arrest. These G0/G1 cells displayed characteristics of monocytic differentiation, including down-regulation of c-myc expression and induction of c-fms transcripts. DNA fragmentation was also studied in cells treated with 5 nM TPA for 48 h and then monitored in drug-free long-term culture. Endonucleolytic cleavage was similarly observed in the differentiated G0/G1 population. However, longer periods of culture were associated with a decrease in DNA fragmentation to undetectable levels. This effect was followed by retrodifferentiation and reentry of cells into cycle. Taken together, these findings demonstrate that internucleosomal DNA fragmentation occurs during induction of monocytic differentiation, and that both of these events are detectable in G0/G1 cells.

UI MeSH Term Description Entries
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D009707 Nucleosomes The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4. Dinucleosomes,Polynucleosomes,Dinucleosome,Nucleosome,Polynucleosome
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D016192 Resting Phase, Cell Cycle A quiescent state of cells during G1 PHASE. G0 Phase,G0 Phases,Phase, G0,Phases, G0
D016193 G1 Phase The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors. First Gap Phase,G1a Phase,G1b Phase,Gap Phase 1,First Gap Phases,G1 Phases,G1a Phases,G1b Phases,Gap Phase, First,Gap Phases, First,Phase 1, Gap,Phase, First Gap,Phase, G1,Phase, G1a,Phase, G1b,Phases, First Gap,Phases, G1,Phases, G1a,Phases, G1b

Related Publications

H Gunji, and R Hass, and D Kufe
January 1996, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
H Gunji, and R Hass, and D Kufe
September 1995, Experimental cell research,
H Gunji, and R Hass, and D Kufe
March 1988, Journal of immunology (Baltimore, Md. : 1950),
H Gunji, and R Hass, and D Kufe
February 2002, Brain research,
H Gunji, and R Hass, and D Kufe
December 1997, Clinical chemistry,
H Gunji, and R Hass, and D Kufe
October 2005, The Journal of biological chemistry,
H Gunji, and R Hass, and D Kufe
July 1995, Journal of cellular physiology,
Copied contents to your clipboard!