Acute effects of oestradiol and progesterone on melittin- and gonadotrophin-releasing hormone-induced LH secretion. 1992

O Ortmann, and K Johannsen, and R Knuppen, and G Emons
Department of Obstetrics and Gynecology, Philipps-University Marburg, Germany.

It is well established that oestradiol and progesterone modulate gonadotrophin-releasing hormone (GnRH)-induced LH secretion from cultured rat pituitary cells. Short-term oestradiol and long-term progesterone treatment exert inhibition, while short-term progesterone and long-term oestradiol treatment lead to enhancement of GnRH-stimulated LH secretion. There are several lines of evidence to suggest that the steroid effects might be mediated via a mechanism involving modulation of the GnRH signal-transduction system. To evaluate the role of arachidonic acid, which serves as an intracellular signal transducer by itself or its lipoxygenase metabolites, in the mediation of oestradiol and progesterone actions, we examined their effects on melittin (activator of phospholipase (A2)-stimulated LH secretion. When pituitary cells from adult female rats were treated for 48 h with 1 nmol oestradiol/l or 1 nmol oestradiol/l plus 100 nmol progesterone/l, GnRH (1 nmol/l)-induced LH secretion was stimulated or inhibited respectively. However, melittin (10-300 nmol/l)-stimulated LH secretion remained unaffected after such treatment. Short-term treatment with oestradiol inhibited GnRH-induced LH secretion while progesterone treatment of oestradiol-primed cells led to a stimulatory effect. Interestingly, melittin-stimulated LH secretion was influenced in the same way after the short treatment paradigm. Perifusion studies were performed to assess the kinetics of these acute steroid actions further. Four separate perifusion chambers were continuously perifused with medium and stimulated for 2 min with 1 nmol GnRH/l or 1 mumol melittin/l every 50 min in a pulsatile fashion.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D007987 Gonadotropin-Releasing Hormone A decapeptide that stimulates the synthesis and secretion of both pituitary gonadotropins, LUTEINIZING HORMONE and FOLLICLE STIMULATING HORMONE. GnRH is produced by neurons in the septum PREOPTIC AREA of the HYPOTHALAMUS and released into the pituitary portal blood, leading to stimulation of GONADOTROPHS in the ANTERIOR PITUITARY GLAND. FSH-Releasing Hormone,GnRH,Gonadoliberin,Gonadorelin,LH-FSH Releasing Hormone,LHRH,Luliberin,Luteinizing Hormone-Releasing Hormone,Cystorelin,Dirigestran,Factrel,Gn-RH,Gonadorelin Acetate,Gonadorelin Hydrochloride,Kryptocur,LFRH,LH-RH,LH-Releasing Hormone,LHFSH Releasing Hormone,LHFSHRH,FSH Releasing Hormone,Gonadotropin Releasing Hormone,LH FSH Releasing Hormone,LH Releasing Hormone,Luteinizing Hormone Releasing Hormone,Releasing Hormone, LHFSH
D008555 Melitten Basic polypeptide from the venom of the honey bee (Apis mellifera). It contains 26 amino acids, has cytolytic properties, causes contracture of muscle, releases histamine, and disrupts surface tension, probably due to lysis of cell and mitochondrial membranes. Melittin,Mellitin
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot

Related Publications

O Ortmann, and K Johannsen, and R Knuppen, and G Emons
February 1974, Journal of reproduction and fertility,
O Ortmann, and K Johannsen, and R Knuppen, and G Emons
January 1979, Journal of reproduction and fertility. Supplement,
O Ortmann, and K Johannsen, and R Knuppen, and G Emons
March 2003, Reproduction (Cambridge, England),
O Ortmann, and K Johannsen, and R Knuppen, and G Emons
January 2012, Journal of neuroendocrinology,
O Ortmann, and K Johannsen, and R Knuppen, and G Emons
July 1986, The Journal of endocrinology,
O Ortmann, and K Johannsen, and R Knuppen, and G Emons
June 1985, Molecular and cellular endocrinology,
O Ortmann, and K Johannsen, and R Knuppen, and G Emons
November 1993, Human reproduction (Oxford, England),
O Ortmann, and K Johannsen, and R Knuppen, and G Emons
June 1988, Clinical endocrinology,
Copied contents to your clipboard!