Inhibition of T4 DNA ligase activity by (+)-CC-1065: demonstration of the importance of the stiffening and winding effects of (+)-CC-1065 on DNA. 1992

D Sun, and L H Hurley
Drug Dynamics Institute, College of Pharmacy, University of Texas, Austin 78712.

Non-denaturing gel electrophoresis analysis demonstrates that the stiffening and winding effects of (+)-CC-1065 produce unusual proximal and distal inhibition of T4 DNA ligase-catalysed ligation of covalently modified DNA. (+)-CC-1065 is a potent antitumor antibiotic produced by Streptomyces zelensis. This drug selectively bonds through N3 of adenine in DNA and lies in the minor groove of DNA, reacting in a highly sequence-selective manner. Previous studies (Lee et al., 1991) have shown that (+)-CC-1065 produces bending and winding of DNA. The DNA bending and sequence specificity is mediated by the alkylating 'A' subunit of (+)-CC-1065, while the close van der Waals contacts between the non-alkylating B and C subunits of (+)-CC-1065 and the floor of the minor groove of DNA are responsible for the winding of DNA. Covalent modification of oligomers with (+)-CC-1065 and structurally related drugs leads to preferential inhibition of T4 DNA ligase on the non-covalently modified strand to the 5' side of the covalent adduct site, but enhanced ligation of the covalently modified strand. We speculate that the differential effect on proximal strand ligation is due to a drug-induced winding and helix-stabilizing effect which occurs predominantly to the 5' side of the adduct. In addition to the proximal inhibition of ligation, we also describe a distal inhibition of T4 DNA ligase activity which occurs exclusively with drug-modified oligomers and that, if successful, would result in 180 degrees out-of-phase bent DNA following ligation. In this case, two 25 mers or a 21 plus a 29 mer are inhibited from ligation when modified with (+)-CC-1065. This distal ligation is unique to (+)-CC-1065 and its analogs that cause stiffening of the DNA helix. The (+)-CC-1065-induced stiffening effect was demonstrated using a circularization assay and was found to be associated with the close van der Waals contacts between the inside edge of (+)-CC-1065 and the floor of the minor groove, and also to the benzofuran moiety of (+)-ABC" (Adozelesin), a (+)-CC-1065 analog. We conclude from these studies that the DNA-winding and helix-stabilizing effects of these drug molecules can dramatically affect the efficiency of proximal ligation mediated by T4 DNA ligase, and the unusual helix-stiffening effect of (+)-CC-1065, (+)-AB'C' and (+)-ABC" can stabilize the structure of bent DNA formed by drug modification, which results in distal ligase inhibition.

UI MeSH Term Description Entries
D007211 Indoles Benzopyrroles with the nitrogen at the number one carbon adjacent to the benzyl portion, in contrast to ISOINDOLES which have the nitrogen away from the six-membered ring.
D007933 Leucomycins An antibiotic complex produced by Streptomyces kitasatoensis. The complex consists of a mixture of at least eight biologically active components, A1 and A3 to A9. Leucomycins have both antibacterial and antimycoplasmal activities.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011088 DNA Ligases Poly(deoxyribonucleotide):poly(deoxyribonucleotide)ligases. Enzymes that catalyze the joining of preformed deoxyribonucleotides in phosphodiester linkage during genetic processes during repair of a single-stranded break in duplex DNA. The class includes both EC 6.5.1.1 (ATP) and EC 6.5.1.2 (NAD). DNA Joinases,DNA Ligase,Polydeoxyribonucleotide Ligases,Polydeoxyribonucleotide Synthetases,T4 DNA Ligase,DNA Ligase, T4,Joinases, DNA,Ligase, DNA,Ligase, T4 DNA,Ligases, DNA,Ligases, Polydeoxyribonucleotide,Synthetases, Polydeoxyribonucleotide
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000080890 Duocarmycins A group of pyrroloindole compounds often with additional spirocyclic unit(s) and their analogs originally isolated from STREPTOMYCES. They bind DNA minor grooves with adenine-N3 alkylation activity. Duocarmycin
D000903 Antibiotics, Antineoplastic Chemical substances, produced by microorganisms, inhibiting or preventing the proliferation of neoplasms. Antineoplastic Antibiotics,Cytotoxic Antibiotics,Antibiotics, Cytotoxic
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

D Sun, and L H Hurley
January 1991, Chemico-biological interactions,
D Sun, and L H Hurley
May 1988, Nucleic acids research,
D Sun, and L H Hurley
March 1990, The Biochemical journal,
D Sun, and L H Hurley
February 1991, Nucleic acids research,
D Sun, and L H Hurley
September 1983, Cancer research,
D Sun, and L H Hurley
May 1988, Biochemistry,
D Sun, and L H Hurley
November 1983, Biochemical and biophysical research communications,
D Sun, and L H Hurley
January 1996, Journal of molecular recognition : JMR,
Copied contents to your clipboard!