Effects of fatty acid alpha-hydroxylation on glycosphingolipid properties in phosphatidylcholine bilayers. 1992

D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
Department of Biochemistry, University of Western Ontario, London, Canada.

The role of glycosphingolipid fatty acid alpha-hydroxylation as a modulator of glycolipid organization and dynamics was considered by 2H-NMR in bilayer membranes. For these experiments, galactosylceramides were prepared in which the natural fatty acid mixture was replaced with perdeuterated 18-carbon hydroxylated or non-hydroxylated stearic acid. The L-stereoisomer of N-(alpha-OH-stearoyl-d34)galactosylceramide and its naturally-occurring D-alpha-OH analogue, were isolated for independent study. Bilayers were formed using 10 mol% galactosylceramide in a shorter chain phospholipid, dimyristoylphosphatidylcholine, in an attempt to reproduce several features of glycolipid-phospholipid interactions typical of cell membranes. Spectra of deuterated galactosylceramide in gel phase phospholipid membranes indicated that alpha-hydroxylation led to greater motional freedom and/or conformational disorder, with no measurable difference between D- and L-alpha-OH fatty acid derivatives. In fluid phosphatidylcholine bilayers the effects were modest. Glycolipid fatty acid hydroxylation led to broadening of the range of order parameters associated with methylene groups near the membrane surface (frequently referred to as the 'plateau region') - this effect being more marked for the naturally-occurring (D) stereoisomer. The degree of overall molecular order sensed by the glycolipid fatty acid chain in a fluid host matrix was minimally affected by alpha-hydroxylation; although the plateau region of the D isomer was slightly more ordered than that of the L isomer and the non-hydroxylated species. These results suggest that a significant aspect of the alpha-hydroxy group effect on glycosphingolipid behaviour in bilayer membranes with low glycolipid content was interference with glycolipid packing amongst host phospholipids in the upper portion of the acyl chains. For the D stereoisomer, there was some evidence that the hydroxy group led to strengthening of interlipid interaction near the membrane surface.

UI MeSH Term Description Entries
D008051 Lipid Bilayers Layers of lipid molecules which are two molecules thick. Bilayer systems are frequently studied as models of biological membranes. Bilayers, Lipid,Bilayer, Lipid,Lipid Bilayer
D009682 Magnetic Resonance Spectroscopy Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006028 Glycosphingolipids Lipids containing at least one monosaccharide residue and either a sphingoid or a ceramide (CERAMIDES). They are subdivided into NEUTRAL GLYCOSPHINGOLIPIDS comprising monoglycosyl- and oligoglycosylsphingoids and monoglycosyl- and oligoglycosylceramides; and ACIDIC GLYCOSPHINGOLIPIDS which comprises sialosylglycosylsphingolipids (GANGLIOSIDES); SULFOGLYCOSPHINGOLIPIDS (formerly known as sulfatides), glycuronoglycosphingolipids, and phospho- and phosphonoglycosphingolipids. (From IUPAC's webpage) Asialoganglioside,Asialogangliosides,Glycosphingolipid,Sphingoglycolipid,Sphingoglycolipids
D006900 Hydroxylation Placing of a hydroxyl group on a compound in a position where one did not exist before. (Stedman, 26th ed) Hydroxylations

Related Publications

D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
June 1992, Biochimica et biophysica acta,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
January 1995, Biophysical journal,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
January 1993, Biochemistry,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
October 1982, Biochimica et biophysica acta,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
March 1993, Biophysical journal,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
April 1992, Biochimica et biophysica acta,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
July 1993, Biophysical journal,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
January 1976, Biochimica et biophysica acta,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
October 1992, Biophysical journal,
D Singh, and H C Jarrell, and E Florio, and D B Fenske, and C W Grant
June 1984, Biophysical chemistry,
Copied contents to your clipboard!