Characterization of the central region containing the X-inactivation center and terminal region of the mouse X chromosome using irradiation and fusion gene transfer hybrids. 1992

L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
Human Molecular Genetics Laboratory, Imperial Cancer Research Fund, London, UK.

The irradiation and fusion gene transfer (IFGT) procedure provides a means of isolating subchromosomal fragments for use in the mapping of loci and for cloning probes from a particular area of a chromosome. Using this procedure, two large panels of somatic cell hybrids that contain mouse X Chromosome (Chr) fragments have been generated. These hybrid panels were generated by irradiating the monochromosomal mouse-hamster hybrid HYBX, which retains the mouse X Chr, with either 10 K or 50 K rads of X-irradiation followed by fusion with a recipient Chinese hamster cell line. IFGT hybrids retaining mouse material were generated at high frequency. These hybrids were used to orient loci in the X-inactivation center region that had not been resolvable in our interspecies backcross panel and also to map, within the terminal region of the X Chr, repeat elements detected by the probe p15-4. These hybrids not only complement existing interspecies meiotic mapping panels for the detailed analysis of specific regions of particular chromosomes, but also provide a potential source of material for chromosome-specific probe isolation.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004303 Dosage Compensation, Genetic Genetic mechanisms that allow GENES to be expressed at a similar level irrespective of their GENE DOSAGE. This term is usually used in discussing genes that lie on the SEX CHROMOSOMES. Because the sex chromosomes are only partially homologous, there is a different copy number, i.e., dosage, of these genes in males vs. females. In DROSOPHILA, dosage compensation is accomplished by hypertranscription of genes located on the X CHROMOSOME. In mammals, dosage compensation of X chromosome genes is accomplished by random X CHROMOSOME INACTIVATION of one of the two X chromosomes in the female. Dosage Compensation (Genetics),Gene Dosage Compensation,Hypertranscription, X-Chromosome,X-Chromosome Hypertranscription,Compensation, Dosage (Genetics),Compensation, Gene Dosage,Compensation, Genetic Dosage,Dosage Compensation, Gene,Gene Dosage Compensations,Genetic Dosage Compensation,Genetic Dosage Compensations,Hypertranscription, X Chromosome,X Chromosome Hypertranscription
D006822 Hybrid Cells Any cell, other than a ZYGOTE, that contains elements (such as NUCLEI and CYTOPLASM) from two or more different cells, usually produced by artificial CELL FUSION. Somatic Cell Hybrids,Cell Hybrid, Somatic,Cell Hybrids, Somatic,Cell, Hybrid,Cells, Hybrid,Hybrid Cell,Hybrid, Somatic Cell,Hybrids, Somatic Cell,Somatic Cell Hybrid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D014960 X Chromosome The female sex chromosome, being the differential sex chromosome carried by half the male gametes and all female gametes in human and other male-heterogametic species. Chromosome, X,Chromosomes, X,X Chromosomes

Related Publications

L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
October 1993, Trends in genetics : TIG,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
September 1991, Somatic cell and molecular genetics,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
July 1979, Somatic cell genetics,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
January 1978, Basic life sciences,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
July 1991, Genomics,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
January 2002, Cytogenetic and genome research,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
July 1996, Cell,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
January 1978, Basic life sciences,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
February 1992, Genomics,
L Sefton, and D Arnaud, and P N Goodfellow, and M C Simmler, and P Avner
June 1991, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!