Role of specific protein kinase C isoforms in modulation of beta1- and beta2-adrenergic receptors. 2005

Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
Centre de Recherche, Institut de Cardiologie de Montréal, 5000 rue Bélanger est, Montréal, PQ, Canada H1T 1C8.

The function of beta-adrenergic receptor (betaAR) is modulated by the activity status of alpha1-adrenergic receptors (alpha1ARs) via molecular crosstalk, and this becomes evident when measuring cardiac contractile responses to adrenergic stimulation. The molecular mechanism underlying this crosstalk is unknown. We have previously demonstrated that overexpression of alpha1B-adrenergic receptor (alpha1BAR) in transgenic mice leads to a marked desensitization of betaAR-mediated adenylyl cyclase stimulation which is correlated with increased levels of activated protein kinase C (PKC) beta, delta and [J. Mol. Cell. Cardiol. 30 (1998) 1827]. Therefore, we wished to determine which PKC isoforms play a role in heterologous betaAR desensitization and also which isoforms of the betaAR were the molecular target(s) for PKC. In experiments using constitutively activated PKC expression constructs transfected into HEK 293 cells also expressing the beta2AR, constitutively active (CA)-PKC overexpression was first confirmed by immunoblots using specific anti-PKC antibodies. We then demonstrated that the different PKC subtypes lead to a decreased maximal cAMP accumulation following isoproterenol stimulation with a rank order of PKCalpha > or = PKCzeta>PKC>PKCbetaII. However, a much more dramatic desensitization of adenylyl cyclase stimulation was observed in cells co-transfected with different PKC isoforms and beta1AR. Further, the modulation of beta1AR by PKC isoforms had a different rank order than for the beta2AR: PKCbetaII>PKCalpha>PKC>PKCzeta. PKC-mediated desensitization was reduced by mutating consensus cAMP-dependent protein kinase (PKA)/PKC sites in the third intracellular loop and/or the carboxy-terminal tail of either receptor. Our results demonstrate therefore that the beta1AR is the most likely molecular target for PKC-mediated heterologous desensitization in the mammalian heart and that modulation of adrenergic receptor activity in any given cell type will depend on the complement of PKC isoforms present.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007700 Kinetics The rate dynamics in chemical or physical systems.
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D000262 Adenylyl Cyclases Enzymes of the lyase class that catalyze the formation of CYCLIC AMP and pyrophosphate from ATP. Adenyl Cyclase,Adenylate Cyclase,3',5'-cyclic AMP Synthetase,Adenylyl Cyclase,3',5' cyclic AMP Synthetase,AMP Synthetase, 3',5'-cyclic,Cyclase, Adenyl,Cyclase, Adenylate,Cyclase, Adenylyl,Cyclases, Adenylyl,Synthetase, 3',5'-cyclic AMP
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
November 1998, Journal of neuroimmunology,
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
October 2002, Journal of neuroscience research,
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
October 1998, American journal of obstetrics and gynecology,
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
October 2002, Trends in cardiovascular medicine,
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
August 2005, Circulation research,
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
June 2008, Heart rhythm,
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
May 1979, Science (New York, N.Y.),
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
January 1998, Life sciences,
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
November 1981, Molecular pharmacology,
Julie Guimond, and Aida M Mamarbachi, and Bruce G Allen, and Hansjörg Rindt, and Terence E Hébert
June 1999, The Journal of biological chemistry,
Copied contents to your clipboard!