Nucleus accumbens cell firing and rapid dopamine signaling during goal-directed behaviors in rats. 2004

Regina M Carelli
Department of Psychology, The University of North Carolina at Chapel Hill, CB# 3270, Davie Hall, Chapel Hill, NC 27599-3270, USA. rcarelli@unc.edu

The nucleus accumbens (Acb) is a key neural substrate underlying goal-directed behaviors for both drugs of abuse as well as 'natural' rewards. Here, I review electrophysiological and electrochemical studies completed in our laboratory that examined Acb cell firing and rapid dopamine signaling during behaviors directed toward reward procurement. Electrophysiological studies are reviewed showing that Acb neurons exhibit patterned discharges relative to operant responding for intravenous self-administration of cocaine versus 'natural' reinforcement in rodents. Importantly, subsequent studies showed that discrete subsets of Acb neurons are selectively activated during multiple schedules for a natural reward (water or food) versus cocaine self-administration. These later findings indicate that separate neural circuits selectively process information about goal-directed behaviors for cocaine versus natural reward. In addition, recent findings are reviewed showing that reinforcer selective firing of Acb neurons is not a direct consequence of chronic drug exposure. Next, electrochemical studies are summarized that used fast scan cyclic voltammetry to measure rapid (subsecond) changes in dopamine in the Acb during cocaine self-administration as well as 'natural' reinforcement in rodents. These findings are considered with respect to the role of dopamine in modulating the activity of Acb neurons that encode goal-directed behaviors, the functional organization of the Acb on a microcircuit level, and proposed directions for future studies.

UI MeSH Term Description Entries
D009714 Nucleus Accumbens Collection of pleomorphic cells in the caudal part of the anterior horn of the LATERAL VENTRICLE, in the region of the OLFACTORY TUBERCLE, lying between the head of the CAUDATE NUCLEUS and the ANTERIOR PERFORATED SUBSTANCE. It is part of the so-called VENTRAL STRIATUM, a composite structure considered part of the BASAL GANGLIA. Accumbens Nucleus,Nucleus Accumbens Septi,Accumbens Septi, Nucleus,Accumbens Septus, Nucleus,Accumbens, Nucleus,Nucleus Accumbens Septus,Nucleus, Accumbens,Septi, Nucleus Accumbens,Septus, Nucleus Accumbens
D003463 Cues Signals for an action; that specific portion of a perceptual field or pattern of stimuli to which a subject has learned to respond. Cue
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006040 Goals The end-result or objective, which may be specified or required in advance. Goal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors
D012201 Reward An object or a situation that can serve to reinforce a response, to satisfy a motive, or to afford pleasure. Rewards
D012646 Self Administration Administration of a drug or chemical by the individual under the direction of a physician. It includes administration clinically or experimentally, by human or animal. Administration, Self,Administrations, Self,Self Administrations
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Regina M Carelli
June 1999, Annals of the New York Academy of Sciences,
Regina M Carelli
January 1985, Annals of the New York Academy of Sciences,
Regina M Carelli
January 1994, Neuroscience and biobehavioral reviews,
Copied contents to your clipboard!