Evolution of nociception in vertebrates: comparative analysis of lower vertebrates. 2004

Lynne U Sneddon
School of Biological Sciences, University of Liverpool, The BioScience Building, Liverpool, Merseyside L69 7ZB, UK. lsneddon@liv.ac.uk

Nociception is an important sensory system of major fundamental and clinical relevance. The nociceptive system of higher vertebrates is well studied with a wealth of information about nociceptor properties, involvement of the central nervous system and the in vivo responses to a noxious experience are already characterised. However, relatively little is known about nociception in lower vertebrates and this review brings together a variety of studies to understand how this information can inform the evolution of nociception in vertebrates. It has been demonstrated that teleost fish possess nociceptors innervated by the trigeminal nerve and that these are physiologically similar to those found in higher vertebrates. Opioid receptors and endogenous opioids are found in the brain and spinal cord of the fishes and morphine blocks avoidance learning using electric shock as well as reducing nociceptive behavioural and physiological responses to noxious stimulation. Comparative analysis of the fishes and higher vertebrates show that fish possess less C fibres than higher vertebrates. The electrophysiological properties of fish nociceptors are almost identical to those found in higher vertebrates suggesting the evolution of these properties occurred before the emergence of the fish groups.

UI MeSH Term Description Entries
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D005399 Fishes A group of cold-blooded, aquatic vertebrates having gills, fins, a cartilaginous or bony endoskeleton, and elongated bodies covered with scales.
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014714 Vertebrates Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes. Vertebrate
D018847 Opioid Peptides The endogenous peptides with opiate-like activity. The three major classes currently recognized are the ENKEPHALINS, the DYNORPHINS, and the ENDORPHINS. Each of these families derives from different precursors, proenkephalin, prodynorphin, and PRO-OPIOMELANOCORTIN, respectively. There are also at least three classes of OPIOID RECEPTORS, but the peptide families do not map to the receptors in a simple way. Opiates, Endogenous,Endogenous Opiates,Opiate Peptides,Opioid Peptide,Peptide, Opioid,Peptides, Opiate,Peptides, Opioid

Related Publications

Lynne U Sneddon
January 1966, Folia haematologica (Leipzig, Germany : 1928),
Lynne U Sneddon
January 1966, Folia haematologica (Leipzig, Germany : 1928),
Lynne U Sneddon
January 1996, The Journal of experimental zoology,
Lynne U Sneddon
January 2012, Annual review of genomics and human genetics,
Lynne U Sneddon
January 1963, Folia haematologica (Leipzig, Germany : 1928),
Lynne U Sneddon
January 1980, Comparative biochemistry and physiology. C: Comparative pharmacology,
Copied contents to your clipboard!