Resveratrol analogues as selective cyclooxygenase-2 inhibitors: synthesis and structure-activity relationship. 2004

Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
Institute of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.

Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is found in grapes and various medical plants. Among cytotoxic, antifungal, antibacterial cardioprotective activity resveratrol also demonstrates non-selective cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) inhibition. In order to find more selective COX-2 inhibitors a series of methoxylated and hydroxylated resveratrol derivatives were synthesized and evaluated for their ability to inhibit both enzymes using in vitro inhibition assays for COX-1 and COX-2 by measuring PGE(2) production. Hydroxylated but not methoxylated resveratrol derivatives showed a high rate of inhibition. The most potent resveratrol compounds were 3,3',4',5-tetra-trans-hydroxystilbene (COX-1: IC(50)=4.713, COX-2: IC(50)=0.0113 microM, selectivity index=417.08) and 3,3',4,4',5,5'-hexa-hydroxy-trans-stilbene (COX-1: IC(50)=0.748, COX-2: IC(50)=0.00104 microM, selectivity index=719.23). Their selectivity index was in part higher than celecoxib, a selective COX-2 inhibitor already established on the market (COX-1: IC(50)=19.026, COX-2: IC(50)=0.03482 microM, selectivity index=546.41). Effect of structural parameters on COX-2 inhibition was evaluated by quantitative structure-activity relationship (QSAR) analysis and a high correlation was found with the topological surface area TPSA (r=0.93). Docking studies on both COX-1 and COX-2 protein structures also revealed that hydroxylated but not methoxylated resveratrol analogues are able to bind to the previously identified binding sites of the enzymes. Hydroxylated resveratrol analogues therefore represent a novel class of highly selective COX-2 inhibitors and promising candidates for in vivo studies.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000077185 Resveratrol A stilbene and non-flavonoid polyphenol produced by various plants including grapes and blueberries. It has anti-oxidant, anti-inflammatory, cardioprotective, anti-mutagenic, and anti-carcinogenic properties. It also inhibits platelet aggregation and the activity of several DNA HELICASES in vitro. 3,4',5-Stilbenetriol,3,4',5-Trihydroxystilbene,3,5,4'-Trihydroxystilbene,Resveratrol, (Z)-,Resveratrol-3-sulfate,SRT 501,SRT-501,SRT501,cis-Resveratrol,trans-Resveratrol,trans-Resveratrol-3-O-sulfate,Resveratrol 3 sulfate,cis Resveratrol,trans Resveratrol,trans Resveratrol 3 O sulfate
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012756 Sheep Any of the ruminant mammals with curved horns in the genus Ovis, family Bovidae. They possess lachrymal grooves and interdigital glands, which are absent in GOATS. Ovis,Sheep, Dall,Dall Sheep,Ovis dalli
D013267 Stilbenes Organic compounds that contain 1,2-diphenylethylene as a functional group. Stilbene,Stilbene Derivative,Stilbene Derivatives,Stilbenoid,Stilbenoids,Derivative, Stilbene,Derivatives, Stilbene
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D016861 Cyclooxygenase Inhibitors Compounds or agents that combine with cyclooxygenase (PROSTAGLANDIN-ENDOPEROXIDE SYNTHASES) and thereby prevent its substrate-enzyme combination with arachidonic acid and the formation of eicosanoids, prostaglandins, and thromboxanes. Cyclo-Oxygenase Inhibitor,Cyclooxygenase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitor,Prostaglandin Endoperoxide Synthase Inhibitors,Prostaglandin Synthase Inhibitor,Prostaglandin Synthase Inhibitors,Prostaglandin Synthesis Antagonist,Prostaglandin Synthesis Antagonists,Cyclo-Oxygenase Inhibitors,Inhibitors, Cyclo-Oxygenase,Inhibitors, Cyclooxygenase,Inhibitors, Prostaglandin Synthase,Inhibitors, Prostaglandin-Endoperoxide Synthase,Antagonist, Prostaglandin Synthesis,Antagonists, Prostaglandin Synthesis,Cyclo Oxygenase Inhibitor,Cyclo Oxygenase Inhibitors,Inhibitor, Cyclo-Oxygenase,Inhibitor, Cyclooxygenase,Inhibitor, Prostaglandin Synthase,Inhibitors, Cyclo Oxygenase,Inhibitors, Prostaglandin Endoperoxide Synthase,Synthase Inhibitor, Prostaglandin,Synthesis Antagonist, Prostaglandin

Related Publications

Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
July 2004, Journal of medicinal chemistry,
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
October 2022, Molecules (Basel, Switzerland),
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
June 2010, Pharmaceutical research,
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
August 2004, Bioorganic & medicinal chemistry letters,
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
July 2018, Bioorganic & medicinal chemistry,
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
October 2005, Journal of enzyme inhibition and medicinal chemistry,
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
December 2003, Journal of medicinal chemistry,
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
September 2014, ACS medicinal chemistry letters,
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
January 1996, Journal of medicinal chemistry,
Marek Murias, and Norbert Handler, and Thomas Erker, and Karin Pleban, and Gerhard Ecker, and Philipp Saiko, and Thomas Szekeres, and Walter Jäger
December 2004, Journal of medicinal chemistry,
Copied contents to your clipboard!