Effects of sulindac and oltipraz on the tumorigenicity of 4-(methylnitrosamino)1-(3-pyridyl)-1-butanone in A/J mouse lung. 1992

P Pepin, and L Bouchard, and P Nicole, and A Castonguay
Laboratory of Cancer Etiology and Chemoprevention, School of Pharmacy, Laval University, Quebec City, Canada.

The efficacies of the non-steroidal, anti-inflammatory drug sulindac and the schistosomicidal agent oltipraz in inhibiting lung tumorigenesis was measured in A/J mice. Lung tumors (15.7 tumors/mouse) were induced by the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK; 9.1 mg/mouse) administered in drinking water for 7 weeks. Feeding mice with sulindac (123 mg/kg diet), 2 weeks before carcinogen treatment until they were killed reduced tumor multiplicity by 53%. Oltipraz (250 mg/kg diet), however, has no effect on tumorigenesis. The absorption and metabolism of NNK were compared in the stomachs and intestines isolated from mice fed AIN-76A diet or sulindac + diet. Sulindac had no effect on alpha-carbon hydroxylation, pyridine N-oxidation or carbonyl reduction of NNK. Mouse lung explants were cultured with 4.7 microM [5-3H]NNK for 4 or 8 h. The addition of 1 mM sulindac to the culture medium reduces the alpha-carbon hydroxylation and pyridine N-oxidation of NNK. However, the administration of sulindac in the diet prior to the excision of the lung explants had no effect on these two metabolic pathways. We compared the levels of sulindac and its sulfide and sulfone metabolites in the lungs, livers and plasma of mice fed an AIN-76A diet containing 130 mg sulindac/kg for 2 weeks. The sulfide metabolite was the most abundant of the three compounds in plasma (17.6 pmol/microliters) and liver tissues (17.7 pmol/mg) but it could not be detected in lung tissues. These results show that non-steroidal anti-inflammatory drugs constitute a new class of chemopreventive agents in lung tumorigenesis. The tumor chemopreventive activity of sulindac is not mediated by the sulfide metabolite responsible for its anti-inflammatory activity.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008175 Lung Neoplasms Tumors or cancer of the LUNG. Cancer of Lung,Lung Cancer,Pulmonary Cancer,Pulmonary Neoplasms,Cancer of the Lung,Neoplasms, Lung,Neoplasms, Pulmonary,Cancer, Lung,Cancer, Pulmonary,Cancers, Lung,Cancers, Pulmonary,Lung Cancers,Lung Neoplasm,Neoplasm, Lung,Neoplasm, Pulmonary,Pulmonary Cancers,Pulmonary Neoplasm
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009602 Nitrosamines A class of compounds that contain a -NH2 and a -NO radical. Many members of this group have carcinogenic and mutagenic properties. Nitrosamine
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D011719 Pyrazines A heterocyclic aromatic organic compound with the chemical formula C4H4N2. Pyrazine
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D004354 Drug Screening Assays, Antitumor Methods of investigating the effectiveness of anticancer cytotoxic drugs and biologic inhibitors. These include in vitro cell-kill models and cytostatic dye exclusion tests as well as in vivo measurement of tumor growth parameters in laboratory animals. Anticancer Drug Sensitivity Tests,Antitumor Drug Screens,Cancer Drug Tests,Drug Screening Tests, Tumor-Specific,Dye Exclusion Assays, Antitumor,Anti-Cancer Drug Screens,Antitumor Drug Screening Assays,Tumor-Specific Drug Screening Tests,Anti Cancer Drug Screens,Anti-Cancer Drug Screen,Antitumor Drug Screen,Cancer Drug Test,Drug Screen, Anti-Cancer,Drug Screen, Antitumor,Drug Screening Tests, Tumor Specific,Drug Screens, Anti-Cancer,Drug Screens, Antitumor,Drug Test, Cancer,Drug Tests, Cancer,Screen, Anti-Cancer Drug,Screen, Antitumor Drug,Screens, Anti-Cancer Drug,Screens, Antitumor Drug,Test, Cancer Drug,Tests, Cancer Drug,Tumor Specific Drug Screening Tests

Related Publications

P Pepin, and L Bouchard, and P Nicole, and A Castonguay
August 1998, Carcinogenesis,
P Pepin, and L Bouchard, and P Nicole, and A Castonguay
September 1985, IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans,
P Pepin, and L Bouchard, and P Nicole, and A Castonguay
October 1991, Cancer research,
P Pepin, and L Bouchard, and P Nicole, and A Castonguay
February 1987, Carcinogenesis,
P Pepin, and L Bouchard, and P Nicole, and A Castonguay
February 2005, Molecular carcinogenesis,
Copied contents to your clipboard!