The cyclobutane dimers of 5-methylcytosine and their deamination products. 2004

Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, CA 94143-0446, USA. shetlar@cgl.ucsf.edu.

The photochemical reactions of 5-methylcytosine (m(5)C), a minor component of mammalian DNA, have been studied at a concentration of 2 mM in frozen 10 mM aqueous NaCl solution at dry ice temperature (194.5 K). For these studies, low-pressure lamps emitting mainly UVB radiation were used. We have isolated and characterized three cyclobutane dimers, namely the cis-anti(c,a) the cis-syn(c,s) and the trans-syn(t,s) forms. While the c,a and the t,s cyclobutane dimers are relatively stable towards deamination upon standing in solution at 277 K, the c,s isomer is gradually converted into the corresponding c,s m(5)C-thymine (Thy) mixed dimer; this latter reaction occurs considerably faster at 310 K. The t,s cyclobutane dimer is converted into the corresponding m(5)C-Thy mixed dimer upon incubation at 373 K, while the c,a dimer is converted into a mixture of m(5)C and c,a mixed dimer when incubated at 310 K. Irradiation of equimolar mixtures of Thy (1 mM) and m(5)C (1 mM) under similar conditions yields each of the three m(5)C cyclobutane dimers, as well as significant amounts of c,a, c,s and t,s m(5)C-Thy mixed cyclobutane dimers. These m(5)C-Thy dimers undergo decompositions similar in nature to the processes undergone by m(5)C cyclobutane dimers. Pseudo-first order rate constants for deamination of the c,s m(5)C homodimer and c,s m(5)C-Thy heterodimer at various temperatures and at pH 7.7 have been measured and the enthalpies and entropies of activation have been evaluated for the deamination processes for these two compounds. The two dimers have half-lives of about 14 and 22 h, respectively, at 310 K; however, at 273 K, the corresponding half-lives can be evaluated as being around 30 and 36 days, respectively.

UI MeSH Term Description Entries
D008968 Molecular Conformation The characteristic three-dimensional shape of a molecule. Molecular Configuration,3D Molecular Structure,Configuration, Molecular,Molecular Structure, Three Dimensional,Three Dimensional Molecular Structure,3D Molecular Structures,Configurations, Molecular,Conformation, Molecular,Conformations, Molecular,Molecular Configurations,Molecular Conformations,Molecular Structure, 3D,Molecular Structures, 3D,Structure, 3D Molecular,Structures, 3D Molecular
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D011740 Pyrimidine Dimers Dimers found in DNA chains damaged by ULTRAVIOLET RAYS. They consist of two adjacent PYRIMIDINE NUCLEOTIDES, usually THYMINE nucleotides, in which the pyrimidine residues are covalently joined by a cyclobutane ring. These dimers block DNA REPLICATION. Cyclobutane Pyrimidine Dimer,Cyclobutane-Pyrimidine Dimer,Cytosine-Thymine Dimer,Pyrimidine Dimer,Thymine Dimer,Thymine Dimers,Cyclobutane-Pyrimidine Dimers,Cytosine-Thymine Dimers,Thymine-Cyclobutane Dimer,Thymine-Thymine Cyclobutane Dimer,Cyclobutane Dimer, Thymine-Thymine,Cyclobutane Dimers, Thymine-Thymine,Cyclobutane Pyrimidine Dimers,Cytosine Thymine Dimer,Cytosine Thymine Dimers,Pyrimidine Dimer, Cyclobutane,Pyrimidine Dimers, Cyclobutane,Thymine Cyclobutane Dimer,Thymine Thymine Cyclobutane Dimer,Thymine-Cyclobutane Dimers,Thymine-Thymine Cyclobutane Dimers
D003641 Deamination The removal of an amino group (NH2) from a chemical compound. Deaminations
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D014466 Ultraviolet Rays That portion of the electromagnetic spectrum immediately below the visible range and extending into the x-ray frequencies. The longer wavelengths (near-UV or biotic or vital rays) are necessary for the endogenous synthesis of vitamin D and are also called antirachitic rays; the shorter, ionizing wavelengths (far-UV or abiotic or extravital rays) are viricidal, bactericidal, mutagenic, and carcinogenic and are used as disinfectants. Actinic Rays,Black Light, Ultraviolet,UV Light,UV Radiation,Ultra-Violet Rays,Ultraviolet Light,Ultraviolet Radiation,Actinic Ray,Light, UV,Light, Ultraviolet,Radiation, UV,Radiation, Ultraviolet,Ray, Actinic,Ray, Ultra-Violet,Ray, Ultraviolet,Ultra Violet Rays,Ultra-Violet Ray,Ultraviolet Black Light,Ultraviolet Black Lights,Ultraviolet Radiations,Ultraviolet Ray
D044503 5-Methylcytosine A methylated nucleotide base found in eukaryotic DNA. In ANIMALS, the DNA METHYLATION of CYTOSINE to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In PLANTS, the methylated sequence is CpNpGp, where N can be any base. 5-Methylcytosine Monohydrochloride,5 Methylcytosine,5 Methylcytosine Monohydrochloride,Monohydrochloride, 5-Methylcytosine

Related Publications

Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
October 2009, Journal of molecular biology,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
January 1993, EXS,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
June 1996, Chemical research in toxicology,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
March 2003, The Journal of biological chemistry,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
February 2011, The Journal of biological chemistry,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
March 1993, Biochemistry,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
October 1994, Biochemistry,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
October 2009, Acta naturae,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
October 2015, The Biochemical journal,
Martin D Shetlar, and Vladimir J Basus, and Arnold M Falick, and Anwer Mujeeb
May 1990, Mutation research,
Copied contents to your clipboard!