Induction of ovarian cancer cell apoptosis by 1,25-dihydroxyvitamin D3 through the down-regulation of telomerase. 2004

Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
Department of Pathology, University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL 33612-4799, USA.

The maintenance of telomere length is required for continued cell proliferation, and approximately 85-90% of human cancers, including ovarian epithelial cancers (OCa), show high activity of telomerase. In the present study we report that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2) VD)(3)induces OCa cell apoptosis by down-regulating telomerase. Quantitative reverse transcription-PCR analysis shows that 1,25(OH)(2)VD(3) decreases the level of human telomerase reverse transcriptase (hTERT) mRNA, the catalytic subunit of telomerase. The decrease is not due to transcriptional repression through the putative vitamin D response element present in the 5' regulatory region of hTERT gene. Instead, 1,25(OH)(2) VD(3) decreases the stability of the hTERT mRNA. Stable expression of hTERT in OCa cells decreases their response to 1,25(OH)(2)VD(3)-induced growth suppression. Although the cell cycle progression of these clones stably expressing hTERT is inhibited by 1,25(OH)(2)VD(3) to a similar degree as that of the parental cells, these clones are more resistant to apoptosis induced by 1,25(OH)(2)VD(3) .In contrast to parental cells, which lose proliferation potential after the 1,25(OH)(2)VD(3) treatment, hTERT-expressing clones resume rapid growth after withdrawal of 1,25(OH)(2)VD(3). Overall, the study suggests that the down-regulation of telomerase activity by 1,25(OH)(2)VD(3) and the resulting cell death are important components of the response of OCa cells to 1,25(OH)(2)VD(3)-induced growth suppression.

UI MeSH Term Description Entries
D010051 Ovarian Neoplasms Tumors or cancer of the OVARY. These neoplasms can be benign or malignant. They are classified according to the tissue of origin, such as the surface EPITHELIUM, the stromal endocrine cells, and the totipotent GERM CELLS. Cancer of Ovary,Ovarian Cancer,Cancer of the Ovary,Neoplasms, Ovarian,Ovary Cancer,Ovary Neoplasms,Cancer, Ovarian,Cancer, Ovary,Cancers, Ovarian,Cancers, Ovary,Neoplasm, Ovarian,Neoplasm, Ovary,Neoplasms, Ovary,Ovarian Cancers,Ovarian Neoplasm,Ovary Cancers,Ovary Neoplasm
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004396 Coloring Agents Chemicals and substances that impart color including soluble dyes and insoluble pigments. They are used in INKS; PAINTS; and as INDICATORS AND REAGENTS. Coloring Agent,Dye,Dyes,Organic Pigment,Stain,Stains,Tissue Stain,Tissue Stains,Organic Pigments,Pigments, Inorganic,Agent, Coloring,Inorganic Pigments,Pigment, Organic,Pigments, Organic,Stain, Tissue,Stains, Tissue
D005260 Female Females
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
March 1985, Endocrinology,
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
November 2012, The Journal of biological chemistry,
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
July 1989, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
December 1990, The Journal of clinical investigation,
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
January 1992, Journal of nutritional science and vitaminology,
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
November 2003, The Journal of biological chemistry,
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
September 1987, Lancet (London, England),
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
September 1983, The Biochemical journal,
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
February 1989, Cellular immunology,
Feng Jiang, and Junying Bao, and Pengfei Li, and Santo V Nicosia, and Wenlong Bai
May 1986, Harefuah,
Copied contents to your clipboard!